Serve Programs, Not Prompts

In Gim
in.gim@yale.edu
Yale University
New Haven, CT, USA

Abstract

Current large language model (LLM) serving systems, pri-
marily designed for text completion, are neither efficient nor
adaptable for increasingly complex LLM applications due to
their inflexible design. We propose a new LLM serving sys-
tem architecture that serves programs instead of prompts to
address this problem. These programs, called LLM Inference
Programs (LIPs), allow users to customize token prediction
and KV cache management at runtime and to offload parts of
their application logic, such as tool execution, to the server.
We describe an example of this architecture through a system
named Symphony, which functions as an operating system
for LIPs. Symphony exposes LLM model computations via
system calls and virtualizes KV cache with a dedicated file
system, while ensuring GPU efficiency with a two-level pro-
cess scheduling scheme. Symphony has the potential to open
the door to a more efficient and extensible ecosystem for
LLM applications.

CCS Concepts

« Computing methodologies — Natural language pro-
cessing.

Keywords
Large language models, LLM serving systems, KV cache

ACM Reference Format:

In Gim and Lin Zhong. 2025. Serve Programs, Not Prompts. In
Workshop on Hot Topics in Operating Systems (HOTOS °25), May
14-16, 2025, Banff, AB, Canada. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3713082.3730398

1 Introduction

Current large language model (LLM) serving systems are pri-
marily designed for high-throughput text completion. They
accept prompts as input and stream generated text as out-
put. This prompt-serving paradigm has become the de facto

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

HOTOS °25, Banff, AB, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1475-7/2025/05
https://doi.org/10.1145/3713082.3730398

Lin Zhong
lin.zhong@yale.edu
Yale University
New Haven, CT, USA

standard, commonly available both as cloud APIs and as
open-source software [22, 30, 41]. Unfortunately, this para-
digm faces growing efficiency and adaptability challenges
as LLM applications evolve into complex, compound Al sys-
tems [50]. For instance, the stateless nature of this para-
digm makes multi-round, programmatic interactions with
LLMs [31, 48, 49] inefficient due to redundant recomputa-
tions. In addition, emerging techniques that deviate from
standard token generation process [21, 27, 32] or require
tool or data-augmented generation workflows [23, 44, 45]
can be difficult to implement within these systems, forcing
developers to modify the core system [1, 15] or create ineffi-
cient client-side workarounds (See §2).

This paper motivates a new LLM serving architecture that
shifts the fundamental unit of service from prompts to pro-
grams. In this model, users flexibly define and offload their
own LLM token generation routines to the LLM serving sys-
tem, utilizing fine-grained APIs provided by the system. That
is, instead of a prompt, a user sends a program to the serving
system to control the generation process. We term these user-
defined routines LLM Inference Programs (LIPs). We identify
three core properties for APIs to program LIPs: (1) decou-
pling generation from model computation, (2) application-
managed model states (e.g., KV cache), and (3) co-locating
external interactions. Even fundamental processes like the
standard autoregressive generation loop should be explicitly
definable using these APIs when needed (See §3).

To exemplify this idea, we present a new LLM serving
system named Symphony (§4). Symphony directly leverages
existing operating system abstractions to design the APIs
needed to program LIPs, and serve them efficiently. For exam-
ple, Symphony uses a file system to virtualize the KV cache
and a system call for model computation. Users can employ
host OS APIs (e.g., POSIX) for custom inference strategies,
such as parallel generation or integrating external tools.

The proposed program-serving paradigm enables develop-
ers to incorporate application-specific optimizations directly
at the LLM generation level and implement new LLM tech-
niques without altering the core LLM serving system. Our
initial experiments indicate that Symphony can deliver sub-
stantial performance improvements, such as achieving up
to 7 times greater throughput compared to existing systems
like vLLM [30], by empowering users to implement custom
KV cache replacement policies through LIPs (See §5).

https://doi.org/10.1145/3713082.3730398
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3713082.3730398

HOTOS ’25, May 14-16, 2025, Banff, AB, Canada

We discuss the main challenges and opportunities of this
new approach in §6, regarding the granularity of the APIs,
security implications, performance overhead, and the need
for new benchmarks.

2 Motivation

Prompt-centric serving systems struggle with efficiency, con-
trol, and adaptability when handling complex LLM work-
flows beyond basic text completion. To address these chal-
lenges, developers frequently resort to ad-hoc system mod-
ifications or inefficient client-side solutions. Consider the
example of developing an LLM-based code editor which pro-
vides live code autocompletions.

o Efficiency: As the user types, each keystroke ideally trig-
gers an update. A naive prompt-based system recomputes
the entire prompt repeatedly. Even with server-side prompt
caching [17, 30], the policy is server-defined and not ap-
plication aware. For example, the serving system might
cache prompts that will not be used any longer.

e Interaction: Suppose the editor implements Retrieval-
Augmented Generation (RAG) [24] to fetch relevant API
documentation via function calling [37]. This means the
client application acts as an intermediary: Prompt — Serv-
ing System — Function Call Spec — Client — Execute
Function (e.g., fetching API documentation) — Client —
Function Result — Serving System. Each arrow involves
boundary crossing overhead.

e Control: Enforcing code conventions or ensuring gen-
erated code fits a specific structure (constrained decod-
ing [7]) requires manipulating the token generation pro-
cess. Prompt-based APIs offer limited control (e.g., tem-
perature, basic JSON mode enforcement), insufficient for
complex grammars or custom sampling strategies.

We elaborate on these underlying problems below.

2.1 Resource Inefficiency

Existing systems suffer from resource inefficiency due to the
lack of application-driven management over the KV cache.
The KV cache is a crucial component in the efficient serving
of “GPT-style” LLMs [39, 40]. It enables incremental LLM
model computations by avoiding the need to recompute all
input tokens. This is possible because the internal represen-
tations of a token (K and V states in self-attention) depend
solely on preceding tokens in causal Transformers, allowing
them to be reused for subsequent LLM model computations
when the preceding token sequences remain unchanged.
Optimizing the management and reuse of the KV cache is
one of the most critical areas for enhancing LLM serving
performance [17, 30, 35, 52].

However, current systems are designed around prompts
and lack awareness of application-specific reuse patterns,

Gim et al.

which limits optimization potential. Typically, KV cache man-
agement is governed by a system-wide policy (e.g., LRU
eviction) that applies to all requests. For instance, in scenar-
ios involving multi-round prompting, maintaining the KV
cache from prior interactions can significantly decrease la-
tency [15]. However, users lack the ability to manage the KV
cache retention, even when they possess knowledge of reuse
patterns. Current methods, like automatic prefix caching in
vLLM, fail to provide this level of flexibility.

Several LLM providers, including Anthropic, offer APIs
for prompt caching [2], enabling users to determine what
should be cached prior to generation. Systems like SGLang
and PromptCache [17] further allow users to define the struc-
ture of input prompts [52], enhancing the efficient reuse of
KV caches in parallel generation strategies such as Tree-of-
Thought [48]. However, while these systems are beneficial in
various contexts, they still handle KV cache management im-
plicitly and lack the capability to accommodate application-
specific reuse patterns beyond their intended design, such
as using graph [5] or recursive [31] generation strategies.

Our solution. We propose making KV cache management
an explicit, application-defined operation—shifting optimiza-
tion responsibility from the serving system to user programs.

2.2 Communication Overheads

Current serving systems are only responsible for token gen-
eration, forcing any additional non-token generation logic,
such as function calling, to be implemented on the client side.
This introduces communication overheads. LLM function
calling [37, 38, 49] is essential for interfacing an LLM with
external APIs and data sources, which is crucial for many
LLM applications [44]. The typical workflow for LLM func-
tion calling involves: (1) the user providing a description
of functions and their parameters as part of the prompt, (2)
the LLM generating a function call in response, and (3) the
user parsing and executing the function call, followed by a
request to return the execution result to the LLM.

In this process, the user effectively acts as a code inter-
preter, necessitating network round trips between the user
and the LLM serving system. These round trips can signifi-
cantly increase the end-to-end latency of an Al application,
especially as the number of function calls increases [18, 25].
However, in many cases where function calls do not rely on
the user’s environment for execution (e.g., accessing third-
party APIs like weather or stock price APIs, or executing
simple code snippets such as NumPy calculations), these
round trips can be avoided by enabling the LLM serving
system to execute the function directly. Moreover, multi-
agent LLM applications [46] implement inter-agent com-
munication through LLM function calling. However, this
agent-to-agent communication incurs high costs because

Serve Programs, Not Prompts

users must handle the communication logic. We can reduce
this overhead by enabling the serving system to manage the
communication autonomously.

Our solution. We propose that the serving system should
incorporate a code execution environment to handle LLM
function calls and code executions internally, rather than
relying on the user to manage all execution and communica-
tion.

2.3 Uncontrollable Generation

Current LLM serving systems integrate the autoregressive
token generation loop into their core, continuously sampling
the next token until they encounter an end-of-sequence (EOS)
token. As a result, users have limited control over token gen-
eration, typically restricted to adjusting a few parameters
in the next-token sampler and the temperature. This limita-
tion complicates the implementation of emerging techniques
for more robust and sophisticated LLM use, such as con-
strained generation, which ensures the LLM output adheres
to a specific format or grammar [7, 16], and policy-based
generation [20, 26, 29] for improved output quality. These
stateful sampling strategies often necessitate intrusive modi-
fications to the LLM serving system and expose specialized
APIs. While some serving systems support popular methods
like constrained decoding through JSON, Regex, and Context-
Free Grammar [6, 12, 13], these methods do not extend to
arbitrary sampling strategies.

We note that exposing the sampling process as an end-
user facing API is impractical due to the large size of the
next-token distribution. For example, GPT-4’s vocabulary
size exceeds 100K tokens, resulting in a distribution size of
approximately 200 KB using FP16.

Our solution. We propose offloading arbitrary programs to
the serving system, enabling applications to directly access
and manipulate the token distribution during generation.

2.4 API Fragmentation

While ad-hoc solutions can address the limitations of current
LLM serving system, they often struggle with adaptability
as LLM workloads grow more varied and complex. For in-
stance, an application focused on solving complex mathemat-
ical problems might leverage parallel reasoning techniques
without prioritizing latency [43]. Conversely, a robotics ap-
plication with numerous LLM function calls might prioritize
reduced latency over absolute accuracy [9].

These diverse workloads present challenges in API de-
sign, as each specialized solution demands unique API re-
quirements. This has led to a fragmentation of LLM APIs
among major providers. For example, Google Cloud [11],

HOTOS °25, May 14-16, 2025, Banff, AB, Canada

OpenAl [36], and Anthropic [2] each offer distinct API de-
signs and semantics for prompt caching, LLM function call-
ing, and constrained decoding.

Our solution. We emphasize the need for composable, fine-
grained APIs that can accommodate the programming of
varied LLM workloads.

2.5 Related Work

Recent research aims to make LLM serving systems more
application-aware, but it often addresses challenges in iso-
lation without a unified approach. Systems like Prompt-
Cache [17], SGLang [52], and Parrot [33] offer APIs for pro-
grammatically defining input prompt structures. These sys-
tems leverage this structure for efficient KV cache reuse.
However, the KV cache management is implicit and can-
not express arbitrary reuse patterns beyond the system’s
predefined abstractions.

For controlled generation, tools such as XGrammar [12],
Outlines [13], and Guidance [19] allow users to enforce out-
put constraints using custom rules or domain-specific lan-
guages (DSLs). These systems embed a fixed set of decoding
strategies directly into the serving stack, limiting extensi-
bility. Symphony generalizes this model by exposing the
low-level token sampling loop as a programmable interface,
enabling arbitrary control strategies that go beyond what
built-in grammars or templates can support.

For LLM function calling, InferCept [1] optimizes the KV
cache during such function calls. Some other works, such as
LLMCompiler [25] or AsyncLM [18], make this interaction
efficient by allowing multiple function calls to be run con-
currently. Symphony makes such workflows native, treating
function execution, caching, and token generation as com-
posable building blocks within a single user-defined LIPs.

3 Program as the Unit of Service

In light of the challenges outlined above, we propose that
LLM serving system should transition from processing mere
prompts to handling programs, which we term LLM Infer-
ence Programs (LIPs). We specifically champion three core
attributes for LIPs, aimed at empowering users to program
their own optimization and generation strategies by utiliz-
ing fine-grained APIs for model computation and KV cache
management.

o Separation of Generation and Model Computation: The logic
for generating tokens, such as an autoregressive loop,
should be decoupled from the model computation, like
Transformer model operations on GPUs. The generation
process should be defined within LIPs, while the LLM serv-
ing system only needs to focus on efficiently managing
the model computations requests.

HOTOS ’25, May 14-16, 2025, Banff, AB, Canada

Current LLM servmg systems

—> external
e User B < APls

. | 5 external
— APlIs

custom
program

[Shared KV cache (file system)]

Figure 1: Comparison with existing serving systems
(top) and Symphony (bottom). Symphony serves as an
operating system for user-defined inference programs.

o Application-Controlled Model States: LLM states, including
the KV cache, should be able to persist beyond a single LIP
and be explicitly managed by the program. It is the user’s
responsibility, not the LLM serving system’s, to efficiently
utilize the KV cache for their tasks. The LLM serving
system should offer an API that allows users to manage
the KV cache, such as creating, updating, or deleting it.

o Integrated External Interactions: Each LIP should indepen-
dently manage its external interactions, such as function
calls and I/O, without depending on the LLM serving sys-
tem or external client-side logic for coordination.

We provide an example code for LIP in Figure 2. We elaborate

on the API design in the following section.

4 LLM Serving System as OS

We introduce a LLM serving system called Symphony, de-
signed to serve LIPs. Symphony treats the execution of a LIP
like a process in an operating system (OS), leveraging exist-
ing OS APIs, abstractions, and implementations. By doing
so, we aim to extend the core functions of the LLM serving
system beyond next token prediction, to include resource vir-
tualization (e.g., KV cache), concurrent program execution,
and I/O management—key responsibilities of an OS.

4.1 Model Computation via System Calls

Symphony provides a specialized system call for LLM model
computation, named pred, which stands for next token pre-
diction. Its signature is as follows:

Gim et al.
1 // load precomputed kv cache
2 prefix_kv = kv_open("sys_msg.kv");
3 suffixes = {
4 tokenize (/** query 1 */),
5 tokenize (/** query n */)
6 1
7 for (suffix suffixes) {
8 // fork prefix kv and thread
9 kv = kv_fork(prefix_kv);
10 pthread_create ({
11 pos = prefix_kv.len(), step = 0;
12 t = suffix;
13 // generate until eos token
14 while (t != EOS) {
15 d = pred(kv, t, pos + step);
16 t = sample(d);
17 step++;
18 print (detokenize(t));
19 }
20 kv_remove (kv);
21 1) §
22 3}

23 join_all_threads();
24 kv_close(prefix_kv);

Figure 2: Example program demonstrating parallel to-
ken generation with shared prefix KV cache.

pred(kv: kv_file, tokens, positions) -> list[dist]

The pred function accepts two parameters: kv, a pointer
to the KV cache file (further details in §4.3), and tokens, a
list of tuples where each tuple contains a token ID and its
absolute position within the context. Upon completion of
the system call, the KV cache file is updated with new ten-
sors corresponding to the provided tokens, and the function
returns a list of next token distributions for each input token.

The dist contains a list of floating-point numbers. With
full access to the token distribution, LIPs implement vari-
ous decoding algorithms, such as constrained decoding and
speculative decoding. For example, to achieve constrained
decoding, LIPs integrate a state machine into the generation
loop to restrict the distribution variables to those that align
with the state machine. For speculative decoding, LIPs pass
multiple input tokens (draft tokens) to the pred system call
and verify them by inspecting the distributions of the tokens.

4.2 KV Cache Management via File System

Symphony treats the KV cache as files, enabling it to persist
beyond a single process’s lifecycle, share across multiple
processes, and allow LIPs to dynamically manipulate it. Sym-
phony introduces a specialized file system called KVFS. KVFS,
similar to traditional file systems, lets LIPs manage files (KV
cache) using file APIs similar to POSIX, supplemented by spe-
cialized APIs for operations like extract and merge. KVFS

Serve Programs, Not Prompts HOTOS °25, May 14-16, 2025, Banff, AB, Canada
—a— HuggingFace TGl —a— VvLLM —e— Symphony
— Pareto Index: 0 Pareto Index: 1.13 Pareto Index: 1.43 Pareto Index: «
30‘ 0.75
< 5.0 1.0
£0.50 10 ’
>
2025 25 05 1
L
= 0.0 0 0.0
50 100 150 20 40 60 80 20 40 10 12 14
Throughput (reg/s) Throughput (reg/s) Throughput (reg/s) Throughput (reg/s)

Figure 3: Estimated performance benefits of prompt caching implemented via LIPs in Symphony. The figure shows
normalized mean end-to-end latency per generated token and throughput using the Llama [14] 13B model on
NVIDIA A100 GPU. Symphony enables application-specific LLM optimizations, such as caching frequently reused
KV cache, without requiring modifications to the serving system design.

virtualizes GPU memory areas that store token-level KV
tensors in pages, using PagedAttention [30].

In a simple text completion scenario, LIPs start by creating
an empty file, retrieve its handle with kv_open, and use
this handle with the prompt in pred (See §4.1), which then
fills the file with the KV cache. They use the same file in
the subsequent autoregressive generation loop. For parallel
generation with shared prefixes, LIPs clone the prefix file
for each thread (See §4.3), allowing different tokens to fill in
without duplicating the actual tensors behind the KV cache.

LIPs can directly manipulate files, enabling them to cre-
ate new files from existing ones by extracting specific to-
ken indices with extract or merging existing files into one.
This capability benefits inference speedup techniques like
runtime context prunning [42, 47], by removing invalid or
unimportant tokens from files. When writing files, LIPs can
apply a file lock to ensure exclusive access. KVFS enforces
access control, allowing only authorized parties to access
files. For example, a file containing “system prompts” might
be readable by all LIPs but writable only by the admin.

4.3 Generations as Threads

To support advanced reasoning strategies that leverage par-
allel generation, LIPs spawn multiple threads using POSIX
thread APIs. For example, a single LIP implements the entire
Tree-of-Thought [48] reasoning, with each thread generating
one branch of hypotheses, forking recursively if needed, and
joining if a generated hypothesis proves unlikely.

LIPs manage I/O independently, eliminating the commu-
nication overhead of server-user roundtrips. For instance,
LIPs initiate LLM function calls by themselves or incorporate
arbitrary computation with the generation process. When
I/O with external APIs blocks thread execution, Symphony
interrupts to put the thread in a waiting state. Symphony ex-
ploits this for resource efficiency: when threads wait for I/O,
Symphony offloads their KV caches from the GPU to the CPU
and restores them upon I/O completion. Additionally, LIPs
communicate directly with each other using inter-process
communication, which is useful for implementing coopera-
tive multi-agent systems.

4.4 Two-level Scheduling

Symphony implements a two-level scheduling scheme with
two distinct schedulers: the thread scheduler and the batch in-
ference scheduler. The thread scheduler handles CPU sched-
uling tasks typical of operating systems and executes the
thread. When a thread triggers the pred system call for LLM
inference, Symphony transfers the thread to the “inference
pool” and marks it as blocked.

Conversely, the inference scheduler aggregates multiple
pred system calls into a single batch and schedules this batch
on the GPU(s). Efficient handling of the pred system call by
the GPU(s) necessitates batch processing to optimize GPU uti-
lization. Consequently, Symphony must strategically batch
these calls. The primary challenge lies in timing the batch ex-
ecution to achieve peak GPU efficiency. Executing the batch
prematurely can result in underutilized GPU resources, di-
minishing throughput, whereas delaying it excessively can
increase wait times for the threads. Symphony dynamically
adjusts batch size according to the average frequency of
system calls, leveraging models like Poisson process.

5 Preliminary Results

We conduct simulated experiments to demonstrate how Sym-
phony enables scalable LLM workloads by allowing users to
define custom optimization strategies through LIPs. We com-
pare Symphony with two popular prompt-serving systems,
vLLM [30] and TGI [22], in a retrieval-augmented generation
(RAG) application scenario. The application inputs a topic,
fetches the relevant document, and generates an answer.
There are 100 documents, each containing 3,000 tokens.

In this setup, a LIP implements prompt caching [17] by
retaining the KV cache for the top 20 most popular topics
and discarding it for others. We evaluate throughput and la-
tency under varying request loads and Pareto indices, which
model the skewness of the popularity distribution. The re-
sults, shown in Figure 3, indicate that Symphony outper-
forms vLLM and TGI when the Pareto index is small (i.e.,
when a few topics are queried frequently). This improvement
arises from Symphony’s ability to leverage increased cache

HOTOS ’25, May 14-16, 2025, Banff, AB, Canada

hits through user-controlled KV cache management. Fur-
thermore, developers can refine LIP logic—e.g., caching only
after consecutive requests for the same topic—to optimize
performance for specific workload patterns.

We note that these experiments do not yet fully capture
the overheads of Symphony. Specifically, the current imple-
mentation has a simplified design where all LIPs are the
same and start and finish at the same time; therefore, it does
not reflect the scheduling overhead and opportunity costs of
using different sampling strategies. We will evaluate these
aspects in future work.

6 Discussion

We believe that bringing programmability to LLM serving
systems is a key step towards creating more efficient and
capable Al applications. Symphony is a step towards achiev-
ing this goal. The transition proposed by Symphony —from
serving prompts to executing LLM Inference Programs (LIPs)
opens up interesting questions about the design and oper-
ation of future LLM serving infrastructure. We discuss key
challenges and research directions below.

Finding the right interface granularity. Symphony cur-
rently provides one system call, pred, for model computation.
This treats a single LLM model forward pass as an atomic
operation. This simplifies system design and batching but
limits the application’s ability to control the model computa-
tion process. Enabling finer-grained access (e.g., to attention
mechanisms [3, 51] or layer outputs [10]) could unlock pow-
erful application-specific optimizations. However, such inter-
faces increase complexity, risk violating model abstraction
boundaries, and complicate efficient batch scheduling. Deter-
mining the optimal granularity—balancing application em-
powerment against system manageability and performance
predictability—remains an open question.

Security implications. Executing user-provided LIPs fun-
damentally shifts the trust boundary within the serving sys-
tem. Unlike prompt-based systems where user input is data,
Symphony takes code, i.e., LIPs, as input. This introduces
security vulnerabilities, such as resource exhaustion, model
confidentiality, LLM jailbreaking, and parameter extraction
via distribution analysis. Practical deployments necessitate
robust sandboxing (e.g., WASM, seccomp filters, lightweight
VMs), resource accounting, and fine-grained access control
to protect the system and other tenants.

Performance overhead. Traditional serving systems achieve
high performance through centralized control over batching,
scheduling, and GPU pipelining. Symphony decentralizes
control, empowering LIPs to manage their generation logic.
This potentially sacrifices global optimization opportunities.
Symphony’s batch scheduler operates with less complete

Gim et al.

information, potentially leading to suboptimal GPU utiliza-
tion, especially with heterogeneous LIPs. Furthermore, de-
coupling the sampling logic into LIPs hinders server-side
optimizations such as pipelining sampling with model ex-
ecution. Designing intelligent scheduling algorithms and
potentially new co-design approaches between LIPs and the
system to mitigate these performance “opportunity costs” is
a key research challenge.

Beyond the OS analogy. Framing Symphony in terms of
OS concepts helps convey its broader responsibilities, i.e.,
resource management, concurrency and I/O, using a famil-
iar mental model. However, this analogy serves more as a
scaffold than as an implementation prescription. Alterna-
tive abstractions may be equally, if not more, suitable for
realizing the core ideas. For example, language runtimes
that support coroutines, actors, or async tasks could offer a
natural fit for enabling concurrent, stateful generation work-
flows. Lightweight execution environments such as WASM
or secure containers could provide a sandboxed context for
running user-defined logic. Moreover, we can draw inspira-
tion from other domains where systems evolved into pro-
grammable platforms by accepting user-supplied logic, such
as OS kernels [4, 34], networking [8], and databases [28].
These systems show that we can expose carefully scoped
programmability at key abstraction boundaries without re-
architecting everything from scratch. This raises a question:
can existing LLM serving systems be salvaged? In our view,
the tight coupling of sampling, caching, and scheduling in
today’s prompt-centric architectures makes this difficult. We
argue that application-level control, spanning model state
management, fine-grained control over generation, and tool
use, requires a clean break from the existing architecture. In
this sense, a redesign like Symphony is not just a matter of
elegance but one of necessity.

Evaluation space. Standard benchmarks for LLM serving
focus on per-prompt throughput and latency and are inade-
quate for evaluating systems like Symphony. The benefits of
programmability manifest in the context of complex, multi-
step application workflows involving state management (KV
cache reuse), external interactions (function calls), and cus-
tom control flow (parallel reasoning). Meaningful evaluation
requires new benchmarks that capture end-to-end perfor-
mance, resource consumption (GPU, CPU, memory), and
responsiveness for realistic application scenarios, moving
beyond isolated token generation metrics.

Acknowledgments

This work is supported in part by National Science Founda-
tion (NSF) Athena Al Institute (Award #2112562) and Yale
University. The authors thank the reviewers for their con-
structive comments.

Serve Programs, Not Prompts

References
[1] R. Abhyankar, Z. He, V. Srivatsa, H. Zhang, and Y. Zhang. InferCept:

[10

[11

[12

(13

(14

(15

[16

(17

[18

[19

[20

[21

]

—

—

= =

]

=

—

]

—

]

—

Efficient intercept support for augmented large language model infer-
ence. In Proc. ICML, 2024.

Anthropic. Prompt caching with claude. https://www.anthropic.com/
news/prompt-caching. Accessed: 2025-01-16.

L Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document
transformer. CoRR, abs/2004.05150, 2020.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. J. Eggers. Extensibility, safety and
performance in the SPIN operating system. In Proc. ACM SOSP, 1995.
M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gi-
aninazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk, and
T. Hoefler. Graph of thoughts: Solving elaborate problems with large
language models. 2024.

L. Beurer-Kellner, M. Fischer, and M. Vechev. Prompting is program-
ming: A query language for large language models. Proceedings of the
ACM on Programming Languages, 7(PLDI):1946-1969, 2023.

L. Beurer-Kellner, M. Fischer, and M. T. Vechev. Guiding llms the right
way: Fast, non-invasive constrained generation. In Proc. ICML, 2024.
P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4: Pro-
gramming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87-95, 2014.

G. Chen, X. Yu, and L. Zhong. Typefly: Flying drones with large
language model. CoRR, abs/2312.14950, 2023.

Y. Chen, X. Pan, Y. Li, B. Ding, and J. Zhou. EE-LLM: large-scale
training and inference of early-exit large language models with 3d
parallelism. In Proc. ICML, 2024.

G. Cloud. Context caching overview. https://cloud.google.com/vertex-
ai/generative-ai/docs/context-cache/context-cache-overview.
Accessed: 2025-01-16.

Y. Dong, C. F. Ruan, Y. Cai, R. Lai, Z. Xu, Y. Zhao, and T. Chen. Xgram-
mar: Flexible and efficient structured generation engine for large lan-
guage models. CoRR, abs/2411.15100, 2024.

Dottxt-AlL Outlines: Structured text generation. https://github.com/d
ottxt-ai/outlines, 2025. Accessed: 2025-04-16.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Yang, A. Fan, et al. The Llama 3 herd of
models. CoRR, abs/2407.21783, 2024.

S. Gao, Y. Chen, and J. Shu. Fast state restoration in LLM serving with
HCache. In Proc. EuroSys, 2025.

S. Geng, M. Josifoski, M. Peyrard, and R. West. Grammar-constrained
decoding for structured NLP tasks without finetuning. In Proc. EMNLP,
2023.

I Gim, G. Chen, S.-S. Lee, N. Sarda, A. Khandelwal, and L. Zhong.
Prompt cache: Modular attention reuse for low-latency inference. In
Proc. MLSys, 2024.

I. Gim, S.-S. Lee, and L. Zhong. Asynchronous LLM function calling.
abs/2412.07017, 2024.

Guidance-Al. Guidance: A guidance language for controlling large
language models. https://github.com/guidance-ai/guidance, 2025.
Accessed: 2025-04-16.

N. Gupta, H. Narasimhan, W. Jitkrittum, A. S. Rawat, A. K. Menon,
and S. Kumar. Language model cascades: Token-level uncertainty and
beyond. In Proc. ICLR, 2024.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case
of neural text degeneration. In Proc. ICLR, 2020.

Hugging-Face. Text generation inference. https://github.com/huggi
ngface/text-generation-inference, 2023. Large Language Model Text
Generation Inference Server in Rust and Python.

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

HOTOS °25, May 14-16, 2025, Banff, AB, Canada

W. Jiang, S. Subramanian, C. Graves, G. Alonso, A. Yazdanbakhsh, and
V. Dadu. RAGO: Systematic performance optimization for retrieval-
augmented generation serving. abs/2503.14649, 2025.

O. Khattab, K. Santhanam, X. L. Li, D. Hall, P. Liang, C. Potts, and
M. Zaharia. Demonstrate-search-predict: Composing retrieval and
language models for knowledge-intensive NLP. CoRR, abs/2212.14024,
2022.

S. Kim, S. Moon, R. Tabrizi, N. Lee, M. W. Mahoney, K. Keutzer,
and A. Gholami. An LLM compiler for parallel function calling.
abs/2312.04511, 2023.

J. Kirchenbauer, J. Geiping, Y. Wen,]. Katz, I. Miers, and T. Goldstein.
A watermark for large language models. In Proc. ICML, 2023.

M. Kuchnik, V. Smith, and G. Amvrosiadis. Validating large language
models with ReLM. In Proc. MLSys, 2023.

C. Kulkarni, S. Moore, M. Nagvi, T. Zhang, R. Ricci, and R. Stutsman.
Splinter:bare-metal extensions for multi-tenant low-latency storage.
In Proc. USENIX OSDI, 2018.

A.Kumar, C. Agarwal, S. Srinivas, S. Feizi, and H. Lakkaraju. Certifying
LLM safety against adversarial prompting. abs/2309.02705, 2023.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and L Stoica. Efficient memory management for large
language model serving with PagedAttention. In Proc. ACM SOSP,
2023.

S. Lee and G. Kim. Recursion of thought: A divide-and-conquer ap-
proach to multi-context reasoning with language models. In Proc. ACL,
2023.

Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transform-
ers via speculative decoding. In Proc. ICML, 2023.

C. Lin, Z. Han, C. Zhang, Y. Yang, F. Yang, C. Chen, and L. Qiu. Parrot:
Efficient serving of LLM-based applications with semantic variable. In
Proc. USENIX OSDI, 2024.

Linux Foundation. ebpf - extended berkeley packet filter. https:
//ebpf.io/, 2024. Accessed: 2025-04-17.

Y. Liu, H. Li, Y. Cheng, S. Ray, Y. Huang, Q. Zhang, K. Du, J. Yao,
S. Lu, G. Ananthanarayanan, M. Maire, H. Hoffmann, A. Holtzman,
and J. Jiang. CacheGen: KV cache compression and streaming for fast
large language model serving. In Proc. ACM SIGCOMM, 2024.
OpenAl. Prompt caching guide. https://platform.openai.com/docs/gui
des/prompt-caching. Accessed: 2025-01-16.

OpenAl Parallel function calling, 2023. Accessed: 2024-10-26.

S. G. Patil, T. Zhang, X. Wang, and J. E. Gonzalez. Gorilla: Large
language model connected with massive apis. In Proc. NeurIPS, 2024.
R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean. Efficiently scaling transformer infer-
ence. In Proc. MLSys, 2023.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang,
C.Ré, L Stoica, and C. Zhang. Flexgen: High-throughput generative
inference of large language models with a single GPU. In Proc. ICML,
2023.

Z. Tang, X. Shen, C. Li, J. Ge, L. Huang, Z. Zhu, and B. Luo. Ast-trans:
Code summarization with efficient tree-structured attention. In Proc.
ACM/IEEE ICSE, 2022.

T. H. Trinh, Y. Wu, Q. V. Le, H. He, and T. Luong. Solving olympiad
geometry without human demonstrations. 2024.

L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang,
X. Chen, Y. Lin, et al. A survey on large language model based au-
tonomous agents. Frontiers of Computer Science, 2024.

X.Wang, Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng, and H. Ji. Executable
code actions elicit better LLM agents. In Proc. ICML, 2024.

https://www.anthropic.com/news/prompt-caching
https://www.anthropic.com/news/prompt-caching
https://cloud.google.com/vertex-ai/generative-ai/docs/context-cache/context-cache-overview
https://cloud.google.com/vertex-ai/generative-ai/docs/context-cache/context-cache-overview
https://github.com/dottxt-ai/outlines
https://github.com/dottxt-ai/outlines
https://github.com/guidance-ai/guidance
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://ebpf.io/
https://ebpf.io/
https://platform.openai.com/docs/guides/prompt-caching
https://platform.openai.com/docs/guides/prompt-caching

HOTOS ’25, May 14-16, 2025, Banff, AB, Canada

[46]

(47]

(48]

(49]

Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li, L. Jiang,
X. Zhang, and C. Wang. AutoGen: Enabling next-gen LLM applications
via multi-agent conversation framework. abs/2308.08155, 2023.

G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis. Efficient streaming
language models with attention sinks. In Proc. ICLR, 2024.

S.Yao, D. Yu, J. Zhao, L. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan.
Tree of thoughts: Deliberate problem solving with large language
models. In Proc. NeurIPS, 2023.

S. Yao, J. Zhao, D. Yu, N. Du, L. Shafran, K. R. Narasimhan, and Y. Cao.
ReAct: Synergizing reasoning and acting in language models. In Proc.
ICLR, 2023.

[50]

[51]

[52]

Gim et al.

M. Zaharia, O. Khattab, L. Chen, J. Q. Davis, H. Miller, C. Potts, J. Zou,
M. Carbin, J. Frankle, N. Rao, and A. Ghodsi. The shift from models to
compound Al systems. https://bair.berkeley.edu/blog/2024/02/18/co
mpound-ai-systems/, 2024.

Z.Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian,
C.Ré, C. Barrett, et al. H20: Heavy-hitter oracle for efficient generative
inference of large language models. In Proc. NeurIPS, 2023.

L. Zheng, L. Yin, Z. Xie, C. Sun, J. Huang, C. H. Yu, S. Cao, C. Kozyrakis,
1. Stoica, J. E. Gonzalez, C. W. Barrett, and Y. Sheng. SGLang: Efficient
execution of structured language model programs. In Proc. NeurIPS,
2024.

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Resource Inefficiency
	2.2 Communication Overheads
	2.3 Uncontrollable Generation
	2.4 API Fragmentation
	2.5 Related Work

	3 Program as the Unit of Service
	4 LLM Serving System as OS
	4.1 Model Computation via System Calls
	4.2 KV Cache Management via File System
	4.3 Generations as Threads
	4.4 Two-level Scheduling

	5 Preliminary Results
	6 Discussion
	References

