Pie: A Programmable Serving System
for Emerging LLM Applications

In Gim
Yale University

Zhiyao Ma
Yale University

Abstract

Emerging large language model (LLM) applications involve
diverse reasoning strategies and agentic workflows, straining
the capabilities of existing serving systems built on a mono-
lithic token generation loop. This paper introduces PIE, a pro-
grammable LLM serving system designed for flexibility and
efficiency. P1e decomposes the traditional generation loop
into fine-grained service handlers exposed via an API and
delegates control of the generation process to user-provided
programs, called inferlets. This enables applications to imple-
ment new KV cache strategies, bespoke generation logic, and
seamlessly integrate computation and I/O—entirely within
the application, without requiring modifications to the serv-
ing system. PIE executes inferlets using WebAssembly, bene-
fiting from its lightweight sandboxing. Our evaluation shows
P1E matches state-of-the-art performance on standard tasks
(3-12% latency overhead) while significantly improving la-
tency and throughput (1.3%-3.4x higher) on agentic work-
flows by enabling application-specific optimizations.

CCS Concepts: - Computing methodologies — Natural
language processing.

Keywords: LLM serving, programmable inference, KV cache

ACM Reference Format:

In Gim, Zhiyao Ma, Seung-seob Lee, and Lin Zhong. 2025. Pie: A
Programmable Serving System for Emerging LLM Applications. In
ACM SIGOPS 31st Symposium on Operating Systems Principles (SOSP
"25), October 13—16, 2025, Seoul, Republic of Korea. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3731569.3764814

1 Introduction

Large language model (LLM) usages are evolving far be-
yond simple text completion. Today’s LLM serving systems
require sophisticated strategies to execute LLM applica-
tion logic ranging from token-level [9, 27, 55] to workflow-
level [21, 77, 84]. These systems must also handle real-time
user events, such as audio [4] and vision [67], while seam-
lessly integrating with external tools [1, 20, 80] and code

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1870-0/2025/10
https://doi.org/10.1145/3731569.3764814

Lin Zhong
Yale University

Seung-seob Lee
Yale University

execution environments [52, 68, 71] to support increasingly
common agentic workflows [70, 81].

These emerging LLM applications reveal fundamental lim-
itations in the efficiency and flexibility of today’s serving
infrastructure (§2), prompting us to identify three require-
ments for next-generation LLM serving systems:

R1. Application-specific KV cache control. LLM work-
flows such as tree-of-thought reasoning [75], map-
reduce summaries [7], multi-step generations [31] re-
quire explicit, fine-grained control over KV cache man-
agement. This includes customizing allocation [38], evic-
tion policies [80], and reuse strategies [84] according to
application-specific logic, rather than relying on the im-
plicit, system-wide heuristics built into serving systems.

R2. Customizable generation processes. Emerging de-
coding methods (assisted decoding [13], MCTS-based
generation [25]), stateful sampling strategies [27], and
safety grounding [36] require the ability to precisely
control and potentially modify the token prediction and
sampling loop on a per-request or even per-step basis.

R3. Integrated computation and I/0. Agentic work-
flows and interactions with external systems necessitate
tightly coupling token generation with arbitrary com-
putations (e.g., running symbolic checks [68]) and I/O
operations (e.g., making API calls [63, 65]) within the
generation flow, without incurring prohibitive latency
penalties or complex external orchestration.

Existing systems, such as vLLM [38] and TGI [29], strug-
gle to meet these requirements due to their reliance on an
inflexible, monolithic token generation loop (Figure 1). This
architecture enforces global policies (e.g., for KV cache man-
agement, hindering R1), employs a closed generation process
that resists customization (hindering R2), and isolates infer-
ence from external operations, such as tool use, forcing the
client to coordinate such operations or otherwise requir-
ing custom modifications to the serving system (hindering
R3). While recent systems like SGLang [84] and Parrot [44]
introduce some programmatic abstractions, they are funda-
mentally constrained by the same monolithic design (§9).

This paper introduces PiE, a programmable LLM serving
system designed to meet these requirements. The core idea
of P1E is to delegate control over the end-to-end generation
process to user-provided programs, called inferlets. P1E decom-
poses the process into fine-grained handlers for stages like
embedding, forward pass, and sampling (Figure 2), instead

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3731569.3764814
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764814

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Gim et al.

(tmapp) (LMapp] (LLMapp | LLM app (LMapp | ((LLMapp |
Users T T T Users
LLM serving system l prompts l l LLM serving system program
lnew prompts output token (4
[Inferlet Custom generation /og/'c] [Inferlet] [Inferlet]
Batch]—»[Embed]—»[Prefill]—»[Decode]—»[Sample i Stream of API calls i i
(One-time only) [Control layer]

Figure 1. Current LLM serving systems conceptually
follow a monolithic prefill-decode loop, batching prompts
and applying global policies for KV cache. This design lacks
flexibility to support application-specific logic.

of a global generation pipeline. Inferlets orchestrate these
handlers via API calls (§4), enabling them to explicitly man-
age resources like the KV cache, define custom generation
logic, and directly integrate arbitrary computation and I/O.

Instead of treating prompts as the basic unit of service,
PI1E elevates programs to this role, allowing hundreds of
concurrent inferlets to adopt distinct optimization strategies.
For example, one may exploit custom KV caching, another
speculative decoding [43], and yet a third may exploit a
complex agentic loop, all on the same underlying serving
infrastructure as illustrated by Figure 2. Viewed through this
lens, all existing serving systems effectively operate with
a single, fixed inferlet, i.e., an autoregressive loop, which
explains why they are inflexible for modern Al applications.

We implement PIE using a layered architecture (§5) and
build its inferlet runtime around WebAssembly (Wasm). De-
velopers can program inferlets using any programming lan-
guage that compiles to Wasm (e.g., C++, Rust, Python) with
the API bindings provided by P1E.

Our evaluation (§7) demonstrates the effectiveness of P1E.
We implement a diverse range of LLM techniques as infer-
lets, including attention variants [5, 74], constrained and
speculative decoding [9, 61], deliberate prompting strate-
gies [7, 75], and agentic workflows. We show that P1e
matches state-of-the-art performance for traditional tasks
(e.g., 3-12% latency overhead for text completion) while sig-
nificantly outperforming existing systems on advanced tasks
like Graph-of-Thought and agentic workflows (1.1X-2.4x
lower latency, 1.3X-3.4x higher throughput) by enabling
application-specific optimizations.

In summary, we report the following contributions.

— Identifying three key limitations in current LLM applica-
tion serving: implicit resource control, inflexible genera-
tion processes, and poor workflow integration.

— The Pi1E architecture, which decomposes the monolithic
generation pipeline into fine-grained service handlers.

— A Turing-complete programming model providing applica-
tions with full and end-to-end control over the generative
workflow, KV cache, and I/O.

! 3 } Batched AP calls

alloc_kvpage| | embed_txt forward . get_dist
handler handler handler | Fine-grained APIs | handler
&

Figure 2. Our proposed system, PiE, dismantles the se-
quential generation process into independent handlers, and
delegates control to user-provided programs called inferlets.

— Implementation and an evaluation demonstrating P1E
matches state-of-the-art performance on standard tasks
while significantly improving latency and throughput on
emerging applications.

PIE is open-sourced at https://github.com/pie-project/pie.

2 Background and Motivation

We first outline the architecture underpinning existing LLM
serving systems. We then detail how this architecture falls
short in supporting increasingly complex LLM applications.

2.1 How LLM serving systems work

Existing LLM serving systems [2, 19, 29, 38, 64, 79] are de-
signed for high-throughput text completion, treating each
user request as a single input prompt to be processed by a
prefill-and-decode model (Figure 1). This generation process
is composed of discrete steps. It begins with a prefill step,
where the system processes the entire prompt in parallel to
populate an initial Key-Value (KV) cache to avoid redundant
computation. The system then enters an iterative decode
phase, where each step uses the KV cache and the last token
to predict and sample the next token, then updates the cache.
To maximize hardware utilization, a central scheduler groups
multiple requests (prompts) into a batch, which advances all
of them through each generation step in lockstep.

2.2 Limitations of existing serving systems

The current LLM serving architecture centers around three
key aspects whose inherent inflexibility creates challenges
for emerging applications: (1) the management of the KV
cache, (2) the fixed structure of the token prediction and sam-
pling loop, and (3) the integration of the generation process
with external computations or workflows.

Implicit KV cache management. Current systems typi-
cally manage the KV cache using implicit, system-wide poli-
cies, such as LRU eviction [38, 84] or prompt caching [21, 47],
where common leading token sequences across requests
share cached entries. While efficient for simple prompt

https://github.com/pie-project/pie

Pie: A Programmable Serving System for Emerging LLM Applications

variations, this approach fails to provide the application-
specific control required by advanced strategies. Techniques
like Recursion-of-Thought [41] and Graph-of-Thought [7]
demand explicit, runtime decisions about which specific
KV cache blocks to retain, discard, reuse, or duplicate
based on the application’s dynamic state or reasoning struc-
ture—control that global heuristics cannot provide. Further-
more, fine-grained manipulation of the KV cache structure
is needed for techniques like attention sink [74] and beam
search [18]. Implementing such features within the mono-
lithic architecture often requires invasive modifications deep
within the system’s memory manager and scheduler. The
engineering effort can hinder adoption; for example, sup-
port for beam search was considered for removal from vLLM
(v0.6.3) due to its complexity [37].

Inflexible decoding process. The tightly coupled “predict-
then-sample” operation within the monolithic loop offers
limited flexibility for customizing the core generation al-
gorithm. Emerging decoding methods like parallel decod-
ing [23, 61] or speculative decoding [43, 62] deviate from
the standard decoding process, often predicting multiple to-
kens per step or using verification steps. Integrating these
is challenging because their variable output granularity in-
terferes with the regular process, which assumes a single
token is generated per request in each batching step. Conse-
quently, such techniques are often implemented as system-
wide toggles [29, 38, 84], rather than being flexibly selectable
or configured on a per-request basis. This lack of per-request
customization is inefficient, as different applications or even
different phases within one application might benefit from
distinct decoding strategies. Similarly, stateful generation
strategies (MCTS [25], grammar-constrained decoding [8, 9])
require managing state across steps, which is cumbersome in
the standard stateless loop. Lastly, dynamic control over the
output distribution (for watermarking [34], safety filters [36])
requires injecting logic around the sampling step, for which
current systems lack clean, application-customizable hooks.

Poor workflow integration. The current architecture in-
herently assumes a “closed-loop” generation process, where
the system focuses solely on producing tokens based on
the initial prompt and the model’s internal state. This is
ill-suited for agentic workflows [31, 76] or interactive appli-
cations that must integrate token generation with arbitrary
computations, such as code execution [52, 65], API calls [57],
symbolic solvers [68]. Integrating such external computa-
tions requires an inefficient workaround: the generation pro-
cess must return control to the client, which performs the
external action and then submits a new request with the
updated context to resume generation. This round-trip in-
curs network latency [1]. More critically, because serving
systems are stateless across requests, the state from the ini-
tial generation, i.e., the KV cache, is discarded. The system

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

treats the continuation as a new prompt, forcing a costly re-
prefill of the interaction history [20, 80]. While techniques
like prefix caching can mitigate this, they are system-level
heuristics rather than a native solution for stateful inter-
action. Additionally, incorporating application-specific pre-
or post-processing steps (e.g., custom tokenization adjust-
ments) into the request lifecycle is also challenging without
introducing overly complex APIs.

Collectively, these limitations reveal a mismatch: The
static, monolithic design optimized for batched text com-
pletion cannot efficiently or flexibly accommodate the dy-
namic, heterogeneous, and interactive nature of modern LLM
applications. The root cause lies in the tight coupling of ap-
plication control logic with the core execution engine within
a fixed architectural pattern. Overcoming these challenges
requires a paradigm shift towards decoupling the applica-
tion’s control logic from the underlying model execution
infrastructure, as embodied by PiE.

3 Overview of Pie

P1E achieves programmability through two fundamental ar-
chitectural shifts, derived from the insight that application-
specific control logic can be efficiently executed outside the
core inference engine if provided with the right interfaces.
First, P1e dismantles the monolithic decoding loop into fine-
grained procedures. Instead of a fixed prefill-decode loop, it
exposes a set of independent, fine-grained services (called
handlers) responsible for specific token prediction stages
like input text embedding, KV cache operations (e.g., alloca-
tion, update), and model forward pass. Second, P1E delegates
end-to-end control to user-provided programs, called inferlets.
These inferlet programs define bespoke generation work-
flows by issuing API calls to the handlers. Inferlets can:

1. Manage resources explicitly, particularly allocating, manip-
ulating, and reusing KV cache pages based on application
logic. This provides the fine-grained control needed for
advanced caching strategies (R1 in §1).

2. Orchestrate handlers precisely, defining custom sequences
of operations beyond standard decode loop. This addresses
the need for customizable generation processes (R2).

3. Integrate arbitrary computation and I/O seamlessly within
their control flow (e.g., calling external APIs, running
checks). This tackles the poor workflow integration of
existing systems (R3).

To realize this programmable model, P1E employs a lay-
ered architecture designed for flexibility and efficiency. At
a high level, user inferlets execute within a dedicated appli-
cation layer, interacting with the system via the APIL The
control layer orchestrates these interactions, managing re-
sources, virtualizing access, and intelligently batching API
calls destined for the hardware. Finally, the inference layer
executes these batched operations, translating them into

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

low-level computations (e.g., GPU kernel invocations) using
specialized handlers for different model operations.

The following sections elaborate on the specifics of this
design. Section 4 details the P1e programming model, out-
lining the API primitives that inferlets use to orchestrate
generation and manage resources. Section 5 elaborates on
the three-layer system architecture, explaining how it sup-
ports the execution of inferlets, manages control flow, and
interfaces with the underlying inference hardware.

4 Programming Model and API

The P1E programming model provides an API for developers
to create what we call inferlets—specialized programs that
orchestrate LLM generation. Each inferlet executes within a
single-threaded, event-driven runtime. Concurrency within
a inferlet is handled through asynchronous, non-blocking
API calls, a model well-suited for I/O-bound agentic work-
flows that spend significant time waiting for API calls or tool
execution to complete.

The programming model for inferlets addresses three key
goals: (1) expressiveness—supporting a wide range of gen-
eration logic, particularly addressing requirements R1-R3
outlined in §1; (2) efficiency—enabling performance optimiza-
tions through fine-grained resource control; and (3) exten-
sibility—remaining agnostic to specific LLM architectures,
while providing a foundation for future extensions.

Table 1 provides an overview of PIE APIs. Among the
42 APIs, 18 are core to defining the LLM forward pass and
resource management in the inference layer, which we elab-
orate on in §4.1. The remaining 24 APIs are for runtime
management, inter-inferlet communication, and I/O, which
are essential for building interactive, agentic applications.
These APIs do not require GPU processing and are handled
entirely by the control layer. We describe them in §4.3.

Scope and tradeoffs. The Pie API is designed for
Transformer-based LLMs. It abstracts the workflow into
three stages, exposing each as an opaque function acces-
sible through the APIL As a result, low-level GPU optimiza-
tions, such as kernel fusion and scheduling [12], quantization
techniques [45], or tensor-parallel execution strategies [83],
remain orthogonal concerns delegated to the inference layer
(§5). The P1E API prioritizes fine-grained programmability
over simplicity. This incurs programming complexity. We
ease the burden through a high-level support library that
provides common subroutines and abstractions (§6.3).

4.1 Abstractions

P1E views the LLM forward pass as a three-stage process: (1)
embed, which prepares input embeddings from raw data
(text, images); (2) forward, which computes output embed-
dings from input embeddings, potentially utilizing the KV
cache; and (3) sample, which derives meaningful outputs

Gim et al.

(e.g., next-token logits) from output embeddings. APIs re-
lated to the model forward pass fall into one of these three
categories. Inferlets combine API calls from each of these
stages to define a complete forward pass.

Resources. P1E defines two primary resources that can be
passed from stage to stage by pointer. (1) EMBED represents a
sequence of token embeddings (input or output), allocated on
a per-token basis to offer flexibility in manipulating individ-
ual token representations. (2) KvPAGE represents a contigu-
ous chunk of the KV cache, following PagedAttention [38].
A KvPAGE can consist of 8-32 tokens. PIE requires explicit
resource allocation and deallocation (e.g., alloc_embed and
alloc_kvpage in Table 1) by inferlets. The returned resource
handles are opaque pointers to the underlying memory man-
aged by Pik. Each inferlet has its own virtual resource ad-
dress space, managed by PIE’s control layer. It is possible
to share resources between inferlets through import/export
APIs (Table 1), where the control layer handles the necessary
physical-virtual resource address mappings.

Command queue. Command queue abstracts a logical se-
quence of API calls issued by an inferlet. Its purpose is to
inform the batch scheduler (§5.2) to make optimal batch-
ing decisions by (1) making the dependencies between API
calls unambiguous, and (2) enabling the setting of priori-
ties between different queues. All API calls that are batch
processed by the batch scheduler, such as resource alloca-
tion/deallocation, forward pass, and sampling, take a pointer
to a command queue object (QUEUE) as an argument. On the
other hand, API calls that do not require batch processing,
such as I/O operations, do not need a command queue ar-
gument and are handled directly by the control layer. For
example, in the following inferlet program, P1e’s control
layer may batch the two forward API calls depending on
different QUEUES so that GPU can process them in parallel
in the inference layer.

ql,q2 = create_queue(), create_queue()
forward(ql, [], iemb1, [], oembl)
forward (g2, [], iemb2, [], oemb2)
await synchronize(ql)

await synchronize(q2)

G W N =

4.2 APIs

Embed API. The embed APIs are responsible for converting
raw input data (e.g., text, images) into EMBED pointers, which
can then be utilized by other APIs. Key functions in this
category include embed_txt and embed_img, which populate
allocated EMBED pointers based on the provided input data.
Additionally, P1E offers auxiliary functions such as tokenize,
detokenize, and num_embeds_needed to facilitate preprocess-
ing and embedding-related operations in this stage.

Forward API. forward and forward_with_adapter fall under
this category. The forward API executes the core Transformer

Pie: A Programmable Serving System for Emerging LLM Applications

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Table 1. Overview of APIs for programming inferlets (non-exhaustive). PIE provides a total of 42 APIs, with 18 dedicated
to LLM execution and the remainder supporting core runtime operations and agentic workflow. To ensure model-agnosticism
and extensibility, P1E organizes LLM-related APIs into traits (§4.4). API calls that involve a command queue (q) are processed
by the inference layer, while those that do not are directly handled by the control layer.

Trait (Supertraits) Function

Behavior

get_arg() -> list[str]
send(msg)

receive() -> future[str]
http_get(url) -> future[str]

available_models() -> list[Model]
available_traits(model) -> list[str]

create_queue(model) -> Queue
synchronize(q) -> future
set_queue_priority(q, pri)

Gets command-line arguments passed during launch.
Sends a message to the client that launched the inferlet.
Receives messages from the client.

Performs an HTTP GET request to the specified URL.
Gets the list of models.

Gets the list of given model’s traits.

Creates a new command queue.

Blocks until the queue finishes execution.

Hints the controller which queue to process first.

Allocate export_kvpage(kv, name)

import_kvpage(name) -> list[KvPage]
alloc_kvpage(q, size) -> list[KvPage]

dealloc_kvpage(q, kv)

alloc_emb(q, size) -> list[Embed]

dealloc_emb(q, emb)
copy_kvpage(q, src, dst)

Exports paged KV cache for use in other programs.
Imports the paged KV cache.

Allocates memory for paged KV cache.
Deallocates memory for paged KV cache.
Allocates buffer space for embeddings.

Deallocates buffer space for embeddings.

Copy KV cache contents at token-level.

Forward (Allocate)
mask_kvpage(q, tgt, mask)

forward(q, ikv, iemb, okv, oemb, mask)

Transform to KV cache and/or output embeddings.
Masks the KV cache in a token-level manner.

InputText (Allocate, Forward) embed_txt(q, tok, pos, embs)

Embeds text input into embeddings

InputImage (Allocate, Forward)
embed_img(q, blob, embs)

num_embs_needed(m, size) -> int

Calculates the number of embeddings needed.
Embeds image input into embeddings.

Tokenize (InputText) tokenize(q, text) -> list[int] Converts text into a list of token IDs.
detokenize(q, token_ids) -> str Converts token IDs back into text.
get_vocabs(q) -> list[list[byte]] Retrieves the vocabulary list.

OutputText (Allocate) get_next_dist(q, emb) -> future[Dist] Gets the next token distribution.

forward pass. forward_with_adapter allows users to spec-
ify LoRA adapters [28] to support fine-tuned models. The
forward API takes input EMBEDS and/or input KvPAGEs, per-
forms the attention and transformation steps, and populates
output EMBEDs and/or output KvPAGEs. forward operates
based on explicit sequence positions associated with the re-
sources. The API either accepts an explicit attention mask in
boolean matrix form or infers it from the provided sequence
positions. For example, omitting the KvPAGE of a token that
precedes the input EMBEDs effectively masks that token dur-
ing attention. This allows inferlets to directly manipulate
the attention context, essential for techniques leveraging
custom attention masks [5, 74, 74] or modular caching [21].
We illustrate its usage in the code below. Lines 1-3 generate
one output embedding given the 9 tokens (i.e., prefill). The
same operation can be split into two forward calls, as shown
in lines 6-7, using a KVPAGE to store intermediate states. We
note that the forward API calls in lines 6-7 may be batched
together, even though they use the same command queue,
which we cover in more detail under vertical batching (§5.2).

1 iemb = alloc_emb(9) # 9 input tokens
2 oemb = alloc_emb (1) # 1 output token
3 forward([]1, iemb, [], oemb)

4 # in examples, 1 KvPage = 1 token

5 kv = alloc_kvpage(8) # 8 tokens
6 forward([], iemb[:-1], kv) # gen kvpage
7

forward(kv, iemb[-1:], oemb)# use kvpage

Sample APL PiE provides APIs to extract the final outcomes
from the output embeddings produced by the forward APIs.
For instance, get_next_dist takes an EMBEDS as input and
outputs the next-token probability distribution. The inferlet
then controls sampling or other post-processing using the
host language. This flexibility is useful for implementing cus-
tom sampling schemes [35, 36] and probability-based LLM
introspection such as LLM watermarking [34] that require
broad access to the underlying token distribution. Returning
the full distribution to the inferlet may incur significant mem-
ory overhead for large vocabularies (e.g., 128K vocabularies
in Llama 3). To mitigate this, P1E truncates the distribution
to the top-K tokens. K is configurable by the user, with a
default of 256 vocabularies.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Putting it all together. The primitives described above pro-
vide the building blocks for custom generation logic. Below,
we implement an autoregressive loop that generates 10 new
tokens given the input prompt “Hello,” using greedy sam-
pling. Since only a single command queue is used in this
example, the QUEUE argument is omitted for brevity.

1 prom = tokenize("Hello, ")

2 tok_limit = len(inp) + 10

3

4 # Resource allocation

5 prom_emb = alloc_emb(len(prom))
6 gen_emb = alloc_emb (1)

7 kv = alloc_kvpage(tok_limit)

8

9 # Prefill

10 pos = list(range(len(prom)))

11 embed_txt(prom, pos, prom_emb)

12 forward([], prom_emb,

13 kv[:len(prom)], gen_emb)

14

15 # Decode

16 for i in range(len(prom), tok_limit):
17 dist = await get_next_dist(gen_emb)
18 gen = dist.max_index ()

19 print(detokenize (gen))

20 embed_txt (gen, [i], gen_emb)

21 forward(kv[:i], gen_emb,

22 kv[i:i+1], gen_emb)

24 # Resource cleanup

25 dealloc_emb(prom_emb)
26 dealloc_emb(gen_emb)
27 dealloc_kvpage (kv)

The inferlet programming model exposes fine-grained
control similar to OpenGL in GPU graphics programming.
Developers who need low-level flexibility can directly or-
chestrate resources and generation logic, while most users
can rely on higher-level abstractions or reusable libraries
built atop this foundation. In practice, many applications will
only use these libraries or simply run pre-compiled inferlets
that suit their needs. For instance, PIE’s support library (§6.3)
allows users to implement the above autoregressive loop in
just three lines of code:

1 ctx = Context(model)
2 ctx.fill("Hello, ")
3 ctx.generate_until (max_tokens=10)

4.3 Supporting agentic workflows

P1E provides essential runtime APIs, such as reading
command-line arguments (get_arg), querying available mod-
els (available_models), and enabling communication be-
tween user (i.e., the client that initiated the inferlet) and
inferlets (send, receive). Additionally, inferlets can indepen-
dently perform I/O operations, such as interacting with exter-
nal servers using networking APIs (http_get, http_post) or
collaborating with other inferlets through message-passing
APIs (broadcast, subscribe). These capabilities enable the

Gim et al.

Application layer

| Inferletl | Inferlet |/>| Inferlet |<®—| Inferlet Lifcycle Manager |

Control layer ,@) OO O command
/>|:||:| O queues
Event dispatcher Controller Batch scheduler
\® @
Inference layer
| APihandier | | APIhandler | | APIhandier | | APIhandier |

Figure 3. Inferlet service workflow (§5). The application
layer executes inferlets that make API calls to the control
layer whose batch scheduler adaptively batches these calls
and forwards them to the inference layer. Results are sent
back to the control layer and then to the inferlets.

creation of dynamic, interactive workflows that seamlessly
integrate LLM inference with external data, tools, computa-
tions, and other agents.

4.4 API extensibility

LLMs vary in their capabilities (e.g., text-only, multimodal)
and may gain new functionalities over time. To provide a
stable yet extensible API, P1k defines each set of related op-
erations as a Trait (similar to traits in Rust). For example,
the InputText trait includes tokenize and embed_txt, while
the Forward trait includes forward. Specific model implemen-
tations then realize one or more traits, and traits themselves
can have dependencies (i.e., supertraits). Table 1 summarizes
the currently defined traits. Adding support for new modali-
ties (e.g., audio input) or capabilities simply requires defining
a new trait and having models implement it. Existing infer-
lets written against older traits continue to work unchanged.
Inferlets can query the traits supported by a model at runtime
using available_traits and adapt their logic accordingly.
On the other hand, traits can be used to extend the API set
for advanced optimizations that are not possible with the cur-
rent API sets. For example, schemes like PyramidKV [11] and
AdaKV [17] rely on internal model statistics like token-level
attention scores. One can define a variant of the Forward
trait, say, IntrospectiveForward, that returns such statistics
to allow inferlets to implement custom caching strategies.

5 System Architecture

P1E employs a three-layer architecture—application, control,
and inference—as illustrated in Figure 3, to efficiently serve
multiple user inferlets. This design separates concerns: The
application layer manages the lifecycle of individual infer-
lets; the control layer oversees system-wide resource coor-
dination, including batch scheduling of API calls; and the
inference layer handles low-level, GPU-specific execution of
model inference tasks.

Pie: A Programmable Serving System for Emerging LLM Applications

Cmd queue 1 Cmd queue 2 Cmd queue 3 Cmd queue 4
©
§ | forward | | forward |
:iF rmmmmemseeioeeeeeeeeeieooooooo
8 [embed_txt | [embed_txt |
3 [et

Horizontal batching Vertical batching

Figure 4. Batch scheduling example (§5.2). A batch of
two embed_txt API calls from command queues 3 and 4, or a
batch of three forward API calls from queue 1 and 2, is eligible
to be dispatched to the inference layer. Horizontal batching
groups calls across different command queues, while vertical
batching groups consecutive calls of the same type within
the same queue if they do not conflict.

5.1 Application layer

The application layer executes inferlets in a runtime that
provides isolation between them. P1E uses WebAssembly
(Wasm) runtime to run and sandbox inferlets. It serves as
an interface for inferlets to interact with P1E via the API in
§4. The Inferlet Lifecycle Manager (ILM) in the application
layer manages inferlet lifecycles, including creation, destruc-
tion, and communication. It provides RPCs for querying,
submitting, and launching inferlets with Wasm binaries and
arguments ((D in Figure 3). Users can communicate with
inferlets through the ILM after launch. The send and receive
APIs in inferlets handle these user events.

5.2 Control layer

The control layer bridges application and inference layers
by batching P1e API calls and routing them to inference
layer operations while providing resource abstraction. A
central controller handles API calls from many concurrent
inferlets (2) in Figure 3), performing three key functions: (1)
handling non-GPU API calls (e.g., core runtime API calls and
I/Os) directly, (2) managing allocation and virtual address
mappings of EMBED and KvPAGE resources (§4.1), and (3)
using a batch scheduler to group GPU API calls (e.g., forward,
embed) for performance efficiency ((3). The event dispatcher
receives and broadcasts results from the inference layer back

to the inferlets ((5)).

Resource management. The control layer manages a global
pool of EMBED and KVPAGE resources, physically located in
the inference layer, with a size configurable at startup based
on GPU memory. It provides inferlets with a virtualized
view of these resources via allocation (e.g., allocate_kvpage)
APIs to provide resource isolation across inferlets. To handle
resource contention, the control layer uses a First Come First
Serve (FCFS) policy, terminating the most recently created
inferlets until sufficient resources are freed.

Batch scheduler. To enhance GPU utilization and overall
throughput, the batch scheduler groups compatible GPU-
bound API calls before dispatching them to the inference

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

layer. As shown in Figure 4, the scheduler manages pending
API calls per command queue (§4.1). By leveraging the unam-
biguous dependencies and priorities provided by command
queues, it forms batches using two techniques:

1. Vertical batching. Consecutive commands of the same type
within a queue can be batched together, provided they do
not conflict, such as writing to the same KvPAGE.

2. Horizontal batching. Commands of the same type across
different queues can be batched together.

Within a batch, calls from higher-priority queues are placed
earlier. If a batch would exceed the inference backend’s max-
imum supported size, the scheduler truncates from the tail.
When multiple API types have eligible batches, the scheduler
selects the batch whose oldest pending call has waited the
longest. A central challenge is deciding when to dispatch:
flushing too early underutilizes kernels; waiting too long
inflates latency. P1E uses a work-conserving policy (§6.1) to
maximize GPU utilization .

5.3 Inference layer

The inference layer acts as the hardware execution backend
for P1E. It receives batched API calls from the control layer via
RPC and manages the physical EMBED and KVPAGE resources,
which are allocated based on the configuration set by the
control layer at startup. Importantly, resource management
is entirely delegated to the control layer, while the inference
layer retains the actual memory.

The inference layer contains multiple API handlers, each
specialized for executing a specific type of batched API call
(e.g., forward) that requires GPU execution. Upon receiving
a batch ((@ in Figure 3), a handler resolves the API call by in-
voking the necessary GPU-side tensor operations and sends
the results back to the control layer’s Event Dispatcher ((%)).
The inference layer resides on the host server connected
to the hardware accelerators, and communicate with the
control layer using inter-process communication (IPC).

6 Implementation

PIE is implemented with 13,650 source lines of code (counted
with cloc), including 11,640 lines for the core system and
the support library in Rust, and the remaining lines for the
GPU-side API handler implementation in Python. P1E uses
wasmtime [10] as the Wasm runtime to execute inferlets and
employs WASI to provide system interfaces like network
I/0. The API handlers currently support the Llama family of
models. We highlight two important implementation aspects
that enhance system performance, and additionally describe
a support library that simplifies development by providing
higher-level abstractions for common generation patterns.

6.1 Adaptive batch scheduling

We implement the batch scheduler (§5.2) using a simple work-
conserving strategy. The GPU can be in one of two states:

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

busy or idle. When the GPU is busy, i.e., processing some
API calls, the scheduler queues incoming API calls. As soon
as the GPU becomes idle, the inference layer immediately
notifies the control layer (via IPC) to trigger batch formation.

6.2 API handlers

We implement the API handlers of the inference layer us-
ing PyTorch [56] and the FlashInfer GPU kernel library [78].
These handlers communicate with the control layer via Ze-
roMQ, a messaging library that supports IPC [82]. We also
provide a native C++/CUDA implementation of the inference
layer that does not depend on PyTorch as part of our open-
source release. In our measurements it achieves 10-30% lower
end-to-end latency and more efficient GPU memory utiliza-
tion than the Python/PyTorch counterpart, owing to custom
memory management that pre-allocates and reuses GPU
buffers to avoid fragmentation. Because this implementation
currently supports only a subset of API traits (e.g., Forward,
InputText), we omit a full evaluation here. Interested readers
can find further details on the project page.

6.3 Support library

We provide a support library, written in Rust, to simplify
inferlet development. It provides procedural macros and a
lightweight asynchronous runtime to reduce the boilerplate
code required to define the Wasm entrypoint and enable
the usage of async/await syntax directly in inferlets. We
offer high-level abstractions, such as Context for automat-
ically managing KvPAGE, and implement common subrou-
tines such as sampling methods (e.g., top-k, temperature),
stopping criteria (e.g., end-of-sequence or maximum tokens),
and fork-join parallelism similar to SGLang’s API, reducing
the need to reimplement these features in each inferlet.

7 Evaluation
In our evaluation, we address the following questions:

Q1. How does P1E’s programming model (§4) facilitate the
deployment of emerging LLM applications while meet-
ing requirements R1 to R3 outlined in §17? (§7.1-§7.2)

Q2. Can Pk effectively lower the end-to-end latency and
improve the throughput of LLM applications compared
to existing LLM serving systems? (§7.3)

Q3. What overhead is introduced by PIE’s programmable
LLM serving system design? (§7.4)

Setup. For our evaluation, we utilize a GCP VM G2 instance
(g2-standard-32) equipped with an NVIDIA L4 GPU fea-
turing 24 GB of memory to host PIE and baselines. We use
Llama 3 models [15] (1B, 3B, 8B) with BF16 weights; KV
cache and activations also use BF16. We measure end-to-end
latency from a remote Python client in a campus network
connecting to the serving system on the GCP instance.

Gim et al.

Table 2. LLM applications and inference techniques
implemented as inferlets, along with their lines of code
(LoC) and compiled Wasm binary sizes. The right column
lists support from vLLM (V), SGLang (S), and LMQL (L). The
Wasm binary sizes can be reduced by stripping debug sym-
bols. Some applications (e.g., CodeACT) have larger binaries
due to embedded libraries such as a JavaScript runtime.

Technique R1-3 (§1) LoC Wasm Supported
Support library (§6.3) 728 -

Text completion 38 129KB V,S,L
ToT [75] R1,R3 198 148 KB S
RoT [41] R1,R3 106 152KB

GoT [7] R1,R3 87 171KB

SKoT [53] R1,R3 82 173KB S
Prefix caching [38] R1 45 131KB Vv, S
Modular caching [21] R1 72 139 KB

EBNF decoding [13] R2 225 2MB V,S, L
Beam search [18] R2 98 142 KB V,L
Watermarking [34] R2 43 130KB

Output validation [35] R2 52 131 KB
Speculative decoding [62] R2 255 152 KB \%4
Jacobi decoding [61] R2 88 96 KB

Attention sink [74] R1 60 133 KB
Windowed attn [5]. R1 60 133KB
Hierarchical attn. [66] R1 42 130KB
Agent-ReACT [76] Al 60 309KB
Agent-CodeACT [71] All 62 6.7 MB
Agent-SWARM [85] All 95 135KB

Baselines. We compare PIE with state-of-the-art LLM serv-
ing systems: vVLLM [38] (v0.6.0), SGLang [84] (v0.4.4), and
specialized frameworks such as LMQL [8] (v0.7.3) for struc-
tured generation and StreamingLLM [74] for attention sink
where relevant. To foster a fair comparison focused on ar-
chitectural differences rather than kernel optimizations, P1E,
vLLM, and SGLang all use the FlashInfer GPU backend [78].

Applications. To demonstrate the expressiveness and per-
formance of P1E (Q1, Q2), we implement a wide range of LLM
applications using the P1e API and Rust, detailed in Table 2.
These cover standard techniques, advanced reasoning strate-
gies, and agentic workflows. For baseline comparisons, we
replicate the same high-level application logic using Python
scripts interacting with the respective system’s API server.

7.1 Serving agentic workflows

Agentic workflows, which integrate LLM inference with
external tools or multi-step reasoning, highlight the impor-
tance of seamless computation and I/O integration. We im-
plement three representative agents—ReACT (web API inter-
actions), CodeACT (code execution), and Swarm (inter-agent

Pie: A Programmable Serving System for Emerging LLM Applications

‘ Agent

[Agent]
|

1% inferlet final outcome

L 4]
prompt 3
tool calling, [Inferlet

Serving system (vVLLM/SGLang) Serving system (Pie)

| Tool handler |]

Figure 5. Implementation comparison of agentic workflows
in vLLM/SGLang (left) vs. P1E (right).

communication)-as inferlets, showcasing P1£’s ability to co-
locate I/O. For comparison, we replicate the same workflows
in vLLM and SGLang using Python scripts, applying best-
effort optimizations and parallelizing client requests where
beneficial for throughput.

The main differences in implementation between P1E and
the baseline systems are illustrated in Figure 5. In baselines,
the application logic only resides within the client, with the
serving system handling only LLM inference. This separation
incurs latency due to round trips for each external interac-
tion, as well as potential re-prefills when the context changes.
In contrast, P1E’s inferlets encapsulate both inference and
external interactions within a single runtime, eliminating
these round trips and allowing direct manipulation of the
KV cache to retain context across interactions.

We measure the latency and throughput in Figure 6 using a
1B model and representative workloads involving 8 (ReACT),
8 (CodeACT), and 32 (Swarm) external I/Os, respectively, per
agent. The observed latencies are 4.27 s, 3.18 s, and 6.14s,
with corresponding throughputs of 29.94, 40.18, and 5.21
agents/s, respectively. P1E significantly outperforms baseline
systems, e.g., reducing latency by up to 15% and increasing
throughput by up to 30% on ReACT. The performance gains
are closely tied to the ratio of I/O to the total number of
tokens in the workflow. For instance, we observe no per-
formance difference between baselines when the number
of external interactions less than two, and the gap linearly
widens as the number of interactions increases.

Two factors contribute to the performance improvements.
For smaller models (1B, 3B), the primary factor is the elimi-
nation of round-trip latency between the client and server
for each external interaction, as the round-trip time (tens
of milliseconds) is comparable to token generation time (a
few milliseconds). For larger models (8B and above), the
dominant factor is the ability to retain the KV cache across
external interactions, avoiding costly re-prefills required by
the baselines.

7.2 Customizing generation strategies

New LLM generation strategies enhance reasoning, output
quality, and efficiency but often require modifications to
underlying serving systems to be efficient or even feasible.
P1E’s programmability addresses this challenge, enabling

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

H Pie [vLLM I SGLang

1.0
0.0 T T T : : :

ReACT CodeACT Swarm ReACT CodeACT Swarm
(a) Latency (b) Throughput

Ratio

Figure 6. Latency (lower the better) and throughput
(higher the better) of LLM agents (X axis: ReACT, Code-
ACT, and Swarm) hosted by different serving systems (P1E,
vLLM, and SGLang). Numbers are normalized to the longest
latency or the greatest throughput in each case.

—— + Mask (#3) ==+ Call (#2) —&— + Cache (#1)

’g —A— Pie (baseline) VLLM (baseline)

& 20 .

1] 3.5x higher throughput
g 16 than vLLM
312

=

> 8

by

o 4

=]

2 0

<

= 1 16 32 64 96 128

Number of Agents

Figure 7. Performance gains via applying workload-specific
optimizations to the simple agentic workflow (§7.2). Stacked
optimizations further improve the performance.

users to implement and deploy novel strategies as inferlets
without modifying the core system.

Applying novel optimizations. PIE creates new opportu-
nities for application-level inference optimizations. Consider
a typical agentic workflow that initiates multiple LLM func-
tion calls to external APIs based on the user query and the
provided set of available APIs. Let us assume that this appli-
cation uniquely exhibits the following characteristics:

1. Certain APIs are used more frequently than others.
2. The majority of APIs are designed to be fire-and-forget.
3. Most APIs within a set are invoked only once.

This application-specific knowledge cannot be explicitly
leveraged by existing serving systems, which typically rely
on implicit optimizations like automatic prefix caching in
vLLM. However, a P1E user can optimize this workflow by em-
ploying the following techniques, each exploiting an afore-
mentioned characteristic:

#1. Retain the KV cache of frequently used API documenta-
tion using export_kvpage.

#2. Concurrently call APIs immediately upon detecting the
callable signature in the generated tokens.

#3. Drop the KV cache of API specifications used only once
from the context using mask_kvpage.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Gim et al.

Hl Pie [1 vLLM EEE SGLang LMQL XXX StreamingLLM

=
=}
.

2 g

>

co é é

Q +

B 0.5 é é

O 7 ?

00_ 728 X X X X X X X X X /X X X X

5 1.0

g

o3

22 05 A

<

|_

e 00_ JX ')()('XX X X 'XX 'XX)'()()(‘rle)'()()()'()()(X X Xex
Text comp. PrefixTree SKoT Cache EBNF SpecDec Beam AttnSink

Figure 8. Latency (lower the better) and throughput (higher the better) of example LLM inference techniques hosted by
different serving systems. Numbers are normalized the same way as in Figure 6. PIE matches state-of-the-art serving systems
in performance. X indicates unsupported techniques or impossible comparisons. For example, SGLang lacks support for the
specific speculative decoding implementation [62] used by P1E and vLLM.

As Figure 7 shows, each successive optimization builds upon
the last, culminating in a 3.5 throughput increase over
the baseline Python-implemented workflow on vLLM. This
highlights how P1E’s fine-grained control over KV cache (R1),
generation process (R2), and I/O (R3) enables developers to
tailor inference strategies to application semantics, yield-
ing substantial performance benefits beyond what generic
system features like prefix caching can offer alone.

Deliberate prompting strategies. We implement four de-
liberate prompting strategies as inferlets: Tree-of-Thought
(ToT), Recursion-of-Thought (RoT), Graph-of-Thought (GoT),
and Skeleton-of-Thought (SkoT), each comprising approxi-
mately 80-100 lines of code (see Table 2). In our implemen-
tation, we use a simplified version of the tasks described in
the original papers (e.g., arithmetic tasks for ToT and RoT,
and document summarization for GoT). For RoT, we allow
recursive branching up to a depth of 5, resulting in a max-
imum of 2°=32 branches. P1E achieves better performance
across all four strategies, with latency reductions of up to
28% and throughput improvements of up to 34% compared
to baseline systems. The performance advantage arises from
P1E’s program-controlled KV cache reuse, which offers more
precise control and flexibility than the implicit KV cache
management in existing systems. This proves beneficial for
complex strategies like Recursion-of-Thought (RoT), where
SGLang’s RadixAttention cannot be effectively applied due
to the dynamic nature of the graph structure. Furthermore,
P1E’s integrated I/O capabilities provide additional perfor-
mance benefits for strategies like Tree-of-Thought (ToT),
where the system can efficiently interleave compute during
value evaluation phases, such as the symbolic evaluation to
trim the search space.

Attention-level techniques. Leveraging the mask_kvpages
and mask argument in the forward API, PIE can implement
various attention-level techniques, including attention sink,

windowed attention, and hierarchical attention. To the best
of our knowledge, these techniques have not been previously
implemented in vLLM or SGLang. We thus compare PIE
against specialized implementations, e.g., StreamingLLM for
attention sink [74]. Compared to the original StreamingLLM
implementation, PIE demonstrates significant performance
improvements, achieving 1.5% lower latency and over 30x
higher throughput. While this comparison is influenced
by differences in the underlying GPU kernel libraries, it
highlights P1£’s ability to effectively express and implement
attention-level techniques as inferlets.

7.3 Replicating existing serving features

A key aspect of PIE is its ability to programmatically replicate
optimizations often implemented as monolithic, system-wide
features in other LLM serving systems. This allows such opti-
mizations to be composable and customized per application.
We implement several such features as inferlets.

For prefix caching, we replicate vVLLM’s mechanism using
export_kvpage and import_kvpage to enable application-
controlled cache sharing. For speculative decoding, we im-
plement vLLM’s n-gram prompt-lookup method [62]. We
also implement beam search. Additionally, we create prefix
trees (RadixAttention equivalent) to support SGLang-style
branching generation by managing shared KV prefixes and
divergent streams. Finally, we implement structured genera-
tion by integrating a Rust-based constrained decoding library
(11guidance) via Wasm to constrain token sampling at each
step. We highlight the EBNF implementation as an example
of P1E’s ability to integrate third-party libraries seamlessly.

As shown in Figure 8, P1E generally achieves compara-
ble performance to vLLM and SGLang on these tasks. For
beam search using three beams, P1E exhibits slightly higher
latency, but achieves better throughput. For EBNF decoding
using JSON grammar, P1E matches SGLang’s performance

Pie: A Programmable Serving System for Emerging LLM Applications

fury
o
o

Cold start (upload + JIT)
—@— Reusing cached binaries

~
wv

Avg. Latency (ms)
N w
[6,] o

o

0 200 400 600 800
Number of Inferlets to launch

Figure 9. Average latency to launch an inferlet. The latency
is insignificant compared to per-token generation latency.
Caching JIT-ed binaries helps reduce latency.

and significantly outperforms vLLM and LMQL. These re-
sults demonstrate that P1E’s programming model is both ex-
pressive and efficient, enabling the implementation of state-
of-the-art optimizations at the application level.

7.4 System overhead analysis

We employ several microbenchmarks to analyze the perfor-
mance impact and overhead introduced by P1E’s program-
ming model and system architecture.

Time to launch new inferlets. Pk is designed to serve
multiple concurrent inferlets, each running in its own Wasm
runtime instance. The number of concurrent inferlets can
grow to several hundred. This might raise concerns about
the overhead associated with launching a large number of
inferlets. To investigate this, we measure the end-to-end time
required to launch an inferlet for the text completion task
(in Table 2). Specifically, we modify the text_completion
inferlet to send an acknowledgement message to the user
before initiating token generation. We then measure the
time elapsed between the request to launch an inferlet and
the reception of acknowledgement, from the Python client.
We measure the latency under two scenarios: cold start and
warm start. In a cold start, the client uploads the Wasm
binary before launching the inferlet, and P1E JIT-compiles the
received binary. In a warm start, the client utilizes the cached
binary in P1E. As shown in Figure 9, the launch overhead
ranges from 10 ms to 50 ms for a warm start and 35 ms
to 81 ms for a cold start when up to 896 inferlets request
launching at the same time. This overhead is insignificant
given that the typical per-token generation latency ranges
from 10 ms to 60 ms. P1E achieves the low startup latency
through the use of wasmtime’s pooled allocation feature [72],
which preallocates virtual memory for the Wasm runtime
for up to 1,000 concurrent instances.

Overhead per API call in inferlets. We examine the over-
head of API calls since inferlets can trigger hundreds to
thousands of calls per task, potentially creating performance
bottlenecks. API calls fall into two categories: (1) handled by
the control layer (e.g., get_arg, send) and (2) handled by the
inference layer (e.g., forward, embed_txt). Figure 11 shows

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

300

Handled in the inference layer

)
2 500 | —@ Handled in the control layer
>
o
c
2 100
©
- ° —o
a_—8— —@ ® @ -
0
0 200 400 600 800

Number of Concurrent Inferlets

Figure 10. Latency of API calls when handled by the control
or inference layer. Higher latency in the inference layer is
attributed to the IPC boundary crossing and Python-side API
call deserialization overhead.

w
o

Hm Handled in the control layer
Handled in the inference layer

N
o
1

[ury
o
1

Avg. API Calls
per Output Token

Text comp.ToT SKoT GoT SD ReACT Beam Swarm

o

Figure 11. Average number of API calls per task normalized
by the number of generated tokens. Beam search (beam=5)
involve significantly more API calls because only the tokens
from the winning beam are counted as output.

the frequency of API calls for various tasks, normalized by
the number of output tokens generated. For basic text com-
pletion, each output token corresponds to approximately 1.6
calls handled by the inference layer and 1.5 by the control
layer. A token generated by more complex operations like
beam search (width=3) corresponds to significantly more—
about 17 and 13 calls handled by the inference and control
layer, respectively. We measure the overhead of each API call
in microseconds, as shown in Figure 10. This overhead is the
time from issuing an API call to its completion, excluding
handling time (e.g., GPU execution or controller processing,
which is typically 6ms-50ms per token on 8B models). We
disable batch scheduling for this measurement. The mea-
sured latency represents an upper bound since most API
calls are executed asynchronously, allowing some latency to
be hidden as they do not wait for the previous call to com-
plete. API calls handled in the control layer are inexpensive,
costing less than 30 microseconds per call, even with 896 con-
current inferlets. In contrast, those handled in the inference
layer are costlier, ranging from 10 to 300 microseconds per
call, depending on the number of concurrent inferlets. The
main overhead arises from Python’s single-threaded deseri-
alization of API calls, which becomes noticeable with more
concurrent inferlets. IPC boundary crossing adds minor, con-
stant latency. A native multi-threaded implementation of
inference layer (e.g., in C++/Rust) could mitigate this.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Table 3. Opportunity cost of PIE’s programming model.
Compared to vLLM, the overhead is small compared to P1£’s
per-token latency (17 ms to 65 ms).

Gim et al.

Table 4. Generation time per output token (TPOT) for
text completion tasks across different model sizes. Larger
model sizes help amortize the overhead of P1E.

Component Latency Param. size vLLM P1e Overhead (%)
Text completion TPOT (vLLM) 64.06 ms 8B 64.06 ms 65.59ms 1.53 ms (2.39%)
Lack of pipelined sampling on GPU +1.320 ms SE 30.30ms 32.01ms 171 ms (5.64%)
Lack of pipelined input embedding on GPU +0.070 ms ! 16.83ms 1875ms 1.92ms (11.41%)
Overhead of control layer batch scheduling +0.050 ms

Overhead of returning output distribution +0.070 ms Table 5. Throughput across batching strategies. The
Boundary crossing (control-inference layer) ~ +0.006 ms adaptive policy, using work-conserving scheduling, achieves
Boundary crossing (application-control layer) +0.001 ms the highest throughput compared to no batching (Eager) and
Wasm processing overhead +0.001 ms the fixed-rate policies (K-only, T-only).

Text completion TPOT (P1E) 65.59 ms Eager K-only T-only Adaptive

Opportunity cost of the programming model. The fine-
grained APIs in P1E create an opportunity cost when com-
pared to monolithic systems like vVLLM. A monolithic de-
coding loop, such as vLLM’s, offers three primary advan-
tages: (1) pipelining the embedding of input tokens and the
sampling of output tokens with the LLM forward pass, (2)
eliminating the need for separate management of output
token distributions, and (3) simplifying batch scheduling. To
measure this cost, we conducted an ablation study on P1E’s
programming model. We created less granular, custom APIs
(e.g., forward_with_sampling) that emulate the fused op-
erations of a monolithic system and measured the resulting
performance gains. The results from 32 concurrent inferlets,
summarized in Table 3, indicate that the opportunity costs
associated with advantages (2) and (3) are relatively minor.
In contrast, the lack of pipelining—advantage (1)—imposes
a more significant latency overhead, ranging from 0.23 to
1.39 ms per token. Despite these costs, the overhead remains
small compared to P1E’s typical per-token latency of 5 to 60
ms. This highlights a trade-off: for highly latency-sensitive
applications, introducing specialized APIs could boost per-
formance, albeit at the cost of reduced composability.

Impact of model size. The relative overhead of P1e dimin-
ishes as model size increases, as the system’s overhead is
amortized over the longer computation time. As shown in Ta-
ble 4, which compares the end-to-end time per output token
(TPOT) with vLLM, the performance gap between the two
systems narrows for larger models. For instance, with an 8B
parameter model, the 1.53 ms overhead from P1E constitutes
just 2.4% of vLLM’s TPOT.

Batching strategies. To demonstrate the advantage of adap-
tive batch scheduling (§6.1), we compared its throughput
against three baseline strategies: no batching (Eager), fixed-
size batching based on queue length (K-only), and timeout-
based batching based on wait time (T-only). Under a fully sat-
urated scheduler with 128 concurrent inferlets, the adaptive

Requests/s 5.61 30.09 78.11 84.85

strategy proved superior. As shown in Table 5, it delivered
up to 17X higher throughput than the Eager baseline and
outperformed the K-only and T-only strategies by 8-40%.

8 Discussion and Limitations

Security implications. Delegating control to user inferlets
and enabling network I/O expand the attack surface relative
to closed-loop serving. Risks include side-channel leakage,
resource-exhaustion (DoS), and misuse of access to token
distributions (e.g., aiding jailbreaks or model extraction). A
comprehensive security treatment is beyond this paper’s
scope, but hardening is essential for commercial adoption of
P1E. Promising directions include capability-based I/O, per-
inferlet rate limits and quotas, and limiting or obfuscating
exposure of logits (e.g., top-K caps).

Runtime implementation choice. We chose WebAssem-
bly (Wasm) as the inferlet runtime to balance isolation,
startup latency, and portability for multi-tenant workloads.
Alternatives fared worse for our goals: native OS pro-
cesses [22] provide weaker containment; containers (e.g.,
Docker) add cold-start and resource overhead for frequent
inferlet instantiation; embedded interpreters (e.g., Lua) often
incur FFI overhead and provide weaker isolation. In practice,
Wasm offered the best trade-off for P1E.

Scalability of the control layer. Today, P1E ’s control layer
is a centralized batch scheduler feeding a single inference
backend. Real deployments must span multiple GPU nodes,
raising challenges in load balancing, KvPAGe locality (place-
ment/migration), and end-to-end SLO enforcement. Scaling
P1E thus requires distributed coordination, globally-aware
scheduling, and cache-aware placement policies, as well as
fault tolerance across nodes.

Retrofitting programmability into existing systems.
Supporting fine-grained programmability entails three archi-
tectural changes: (1) integrating a runtime to execute user

Pie: A Programmable Serving System for Emerging LLM Applications

code safely, (2) designing low-level APIs for control and re-
source management, and (3) redesigning batch scheduling
around API-level GPU operations. Retrofitting these into cur-
rent serving stacks would amount to P1g’s architecture. That
said, more incremental, coarser-grained programmability
layers that better fit existing designs remain an interesting
avenue for future work.

Handling resource contention. When demand for Kv-
PAGE exceeds capacity, P1E currently applies an FCFS policy
that terminates the most recently started inferlet to free re-
sources. Richer policies could improve fairness and efficiency:
per-inferlet quotas, SLO/priority-aware admission and pre-
emption, and even controlled overprovisioning by swapping
KvPAGE between CPU and GPU memory. Exploring these
mechanisms is promising future work.

9 Related Work

PIE builds on a lineage of programmable systems [6, 16, 26,
46, 49, 50, 58] across operating systems, networking, and dis-
tributed frameworks, which expose fine-grained interfaces to
separate application-level control from system internals—a
core principle PIE applies to the domain of LLM serving.

9.1 Application-aware LLM serving

PIE is in line with the recent trend towards holistic serving
system optimizations for LLM workflows [1, 2, 30, 48, 60].
Notably, recent systems like SGLang [84] and Parrot [44]
have introduced programmatic control constructs. SGLang
uses primitives like fork/join/gen to optimize shared gen-
eration paths via its RadixAttention, while Parrot employs
“semantic variables” to improve KV cache reuse based on
application context. While offering valuable abstractions for
structured generation and prompt management (partially ad-
dressing R1 and R2), they are still fundamentally constrained
by a monolithic generation process. Consequently, they lack
fine-grained, direct control over low-level resources (e.g.,
individual KV cache pages), the sequence of inference steps
(e.g., embedding, attention, sampling), or seamless integra-
tion of arbitrary I/O within the generation process —limiting
their ability to meet R3. In contrast, P1E provides lower-level,
explicit control via its API, enabling customization beyond
what these higher-level abstractions permit. Orthogonally,
several works improve the interaction efficiency between
LLMs and external tools to address R3—for example, by par-
allelizing LLM function calls [33, 54] or managing the KV
cache while awaiting call completion [20, 80]. P1E supports
such policies as user-defined programs, eliminating the need
for internal changes to the serving system.

9.2 Programming LLM behavior

P1E shares conceptual similarities with recent works on “LLM
programming”, which has emerged along two main direc-
tions: (1) constrained decoding using formal grammars, and

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

(2) prompt engineering and orchestration frameworks. In the
first direction, there exists LMQL [8], Guidance [24], Out-
lines [14], XGrammar [13], and AICI [51]. These systems
allow developers to control generation semantics—typically
via EBNF grammars or declarative constraints—within the
confines of the standard decoding loop. Notably, AICI uses
WebAssembly to allow more flexibility. In contrast, PIE ex-
tends this idea by using a Turing-complete language not only
to specify what the model should generate, but also how gen-
eration is performed. That is, P1E controls the inference process
itself —including tokenization, attention, KV cache manage-
ment, sampling, and I/O—step by step. This provides a level
of programmability that goes beyond output semantics. In
the second direction, frameworks such as LangChain [39],
LangFlow [40], DSPy [32], and AutoGen [73] simplify LLM
agent workflows, and prompt optimization, with a focus on
developer usability and output quality. P1E is orthogonal and
complementary to these systems. It can serve as a backend
by running inferlets that either manually embed their logic
or are generated from their abstractions. This allows such
frameworks to inherit P1E’s performance and I/O integration.

9.3 Efficient Transformer inference

A growing body of work has improved Transformer in-
ference through quantization [45, 69], parallelism [3, 83],
GPU kernel optimization [12, 78], and memory manage-
ment [42, 59, 77]. PIE complements these efforts by enabling
a programmable LLM generation process that builds on top
of such efficiency-oriented techniques.

10 Conclusion

PIE represents a paradigm shift in LLM serving towards pro-
grammability. Moving beyond inflexible monolithic designs,
P1E decomposes the token generation process into modular
API handlers. This allows user-provided programs (inferlets)
to orchestrate the entire workflow, enabling fine-grained
control over KV cache management, custom decoding pro-
cedures, and tight integration of external computation and
I/0. We show that this programmability allows PIE to imple-
ment a wide array of modern LLM techniques, from custom
attention patterns to agentic workflows. Crucially, our eval-
uation confirms that P1E achieves competitive performance
on standard tasks while delivering substantial throughput
and latency improvements for complex workloads by facili-
tating targeted optimizations. Our results demonstrate that
programmability is key to the performance and flexibility
required by the next generation of LLM applications.

Acknowledgments

This work is supported in part by National Science Founda-
tion (NSF) Athena Al Institute (Award #2112562) and Yale
University. The authors thank the reviewers for their con-
structive comments.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

References

(1]

(2]

[10

—

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao Zhang, and Yiying
Zhang. 2024. InferCept: Efficient Intercept Support for Augmented
Large Language Model Inference. In Proc. ICML.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav S Gulavani, Alexey Tumanov, and Ramachandran
Ramjee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference
with Sarathi-Serve. In Proc. USENIX OSDIL

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan,
Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia
Zhang, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed- Inference:
Enabling Efficient Inference of Transformer Models at Unprecedented
Scale. In Proc. IEEE/ACM SC Conf.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo
Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. 2025. Qwen?2.
5-vl technical report. arXiv preprint arXiv:2502.13923 (2025).

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer:
The Long-Document Transformer. CoRR abs/2004.05150 (2020).
Brian N Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Giin Sirer,
Marc E Fiuczynski, David Becker, Craig Chambers, and Susan J Eggers.
1995. Extensibility, Safety and Performance in the SPIN Operating
System. In Proc. ACM SOSP.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal
Podstawski, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert
Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph of
Thoughts: Solving Elaborate Problems with Large Language Models.
In Proc. AAAL

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2023. Prompt-
ing is programming: A query language for large language models.
Proceedings of the ACM on Programming Languages 7, PLDI (2023),
1946-1969.

Luca Beurer-Kellner, Marc Fischer, and Martin T. Vechev. 2024. Guiding
LLMs The Right Way: Fast, Non-Invasive Constrained Generation. In
Proc. ICML.

Bytecode Alliance. 2025. bytecodealliance/wasmtime: A lightweight
WebAssembly runtime that is fast, secure, and standards-compliant.
https://github.com/bytecodealliance/wasmtime. Accessed: 2025-08-
26.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu,
Keming Lu, Wayne Xiong, Yue Dong, Junjie Hu, et al. 2024. Pyramidkv:
Dynamic kv cache compression based on pyramidal information fun-
neling. arXiv preprint arXiv:2406.02069 (2024).

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. FlashAttention: Fast and Memory-Efficient Exact Attention with
10-Awareness. In Proc. NeurIPS.

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yi-
long Zhao, and Tianqi Chen. 2024. XGrammar: Flexible and Efficient
Structured Generation Engine for Large Language Models. CoRR
abs/2411.15100 (2024).

Dottxt-Al 2025. Outlines: Structured Text Generation. https://github
.com/dottxt-ai/outlines. Accessed: 2025-04-16.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. 2024. The Llama 3 Herd of Models. CoRR
abs/2407.21783 (2024).

Dawson R Engler, M Frans Kaashoek, and James W O’toole Jr. 1995.
Exokernel: An Operating System Architecture for Application-Level
Resource Management. In Proc. ACM SOSP.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. 2024.
Ada-kv: Optimizing kv cache eviction by adaptive budget allocation
for efficient llm inference. arXiv preprint arXiv:2407.11550 (2024).
Markus Freitag and Yaser Al-Onaizan. 2017. Beam Search Strategies
for Neural Machine Translation. ACL (2017), 56.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Gim et al.

Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-
Latency Serverless Inference for Large Language Models. In Proc.
USENIX OSDL

Shiwei Gao, Youmin Chen, and Jiwu Shu. 2025. Fast State Restoration
in LLM Serving with HCache. In Proc. EuroSys.

In Gim, Guojun Chen, Seung-Seob Lee, Nikhil Sarda, Anurag Khandel-
wal, and Lin Zhong. 2024. Prompt Cache: Modular Attention Reuse
for Low-Latency Inference. In Proc. MLSys.

In Gim and Lin Zhong. 2025. Serve Programs, Not Prompts. In Proceed-
ings of the 2025 Workshop on Hot Topics in Operating Systems. 179-186.
Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz,
and Gabriel Synnaeve. 2024. Better & Faster Large Language Models
via Multi-token Prediction. In Proc. ICML.

Guidance-Al 2025. Guidance: A guidance language for controlling
large language models. https://github.com/guidance-ai/guidance.
Accessed: 2025-04-16.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum,
Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar. 2024.
Language Model Cascades: Token-Level Uncertainty And Beyond. In
Proc. ICLR.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. In Proc. USENIX NSDIL

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020.
The Curious Case of Neural Text Degeneration. In Proc. ICLR.
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, Weizhu Chen, et al. 2022. Lora: Low-rank
adaptation of large language models. ICLR 1, 2 (2022), 3.
Hugging-Face. 2023. Text Generation Inference. https://github.com/h
uggingface/text-generation-inference. Large Language Model Text
Generation Inference Server in Rust and Python.

Wengi Jiang, Suvinay Subramanian, Cat Graves, Gustavo Alonso, Amir
Yazdanbakhsh, and Vidushi Dadu. 2025. RAGO: Systematic Perfor-
mance Optimization for Retrieval-Augmented Generation Serving.
abs/2503.14649 (2025).

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy
Liang, Christopher Potts, and Matei Zaharia. 2022. Demonstrate-
Search-Predict: Composing retrieval and language models for
knowledge-intensive NLP. CoRR abs/2212.14024 (2022).

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang,
Keshav Santhanam, Saiful Haq, Ashutosh Sharma, Thomas T Joshi,
Hanna Moazam, Heather Miller, et al. 2024. DSPy: Compiling declara-
tive language model calls into state-of-the-art pipelines. In Proc. ICLR.
Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W
Mahoney, Kurt Keutzer, and Amir Gholami. 2023. An LLM Compiler
for Parallel Function Calling. abs/2312.04511 (2023).

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian
Miers, and Tom Goldstein. 2023. A Watermark for Large Language
Models. In Proc. ICML.

Michael Kuchnik, Virginia Smith, and George Amvrosiadis. 2023. Val-
idating Large Language Models with ReLM. In Proc. MLSys.

Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Soheil Feizi, and Hima
Lakkaraju. 2023. Certifying LLM Safety against Adversarial Prompting.
abs/2309.02705 (2023).

Woosuk Kwon. 2024. [RFC] Drop beam search support. https://gith
ub.com/vlim-project/vlim/issues/6226. GitHub issue #6226, vLLM
Project.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model Serv-
ing with PagedAttention. In Proc. ACM SOSP.

https://github.com/bytecodealliance/wasmtime
https://github.com/dottxt-ai/outlines
https://github.com/dottxt-ai/outlines
https://github.com/guidance-ai/guidance
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/vllm-project/vllm/issues/6226
https://github.com/vllm-project/vllm/issues/6226

Pie: A Programmable Serving System for Emerging LLM Applications

(39]

[40]

[41]

(42]

(45]

[46]

(47]

(48]

(49]

(50]
(51]

(52]

(53]

(54]

(55]

(57

—

(58]

(59]

LangChain-AlL 2025. LangChain: Build context-aware reasoning ap-
plications. https://github.com/langchain-ai/langchain. Accessed:
2025-04-16.

Langflow. 2025. Langflow: Low-code Al builder for agentic and RAG
applications. https://www.langflow.org/. Accessed: 2025-04-16.
Soochan Lee and Gunhee Kim. 2023. Recursion of Thought: A Divide-
and-Conquer Approach to Multi-Context Reasoning with Language
Models. In Proc. ACL.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. 2024.
InfiniGen: Efficient Generative Inference of Large Language Models
with Dynamic KV Cache Management. In Proc. USENIX OSDL

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast Inference
from Transformers via Speculative Decoding. In Proc. ICML.

Chaofan Lin, Zhenhua Han, Chengruidong Zhang, Yuqing Yang, Fan
Yang, Chen Chen, and Lili Qiu. 2024. Parrot: Efficient Serving of LLM-
based Applications with Semantic Variable. In Proc. USENIX OSDL

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-
Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song
Han. 2024. Awq: Activation-aware weight quantization for on-device
LLM compression and acceleration. In Proc. MLSys.

Linux Foundation. 2024. eBPF - Extended Berkeley Packet Filter. https:
//ebpf.io/. Accessed: 2025-04-17.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang,
Qizheng Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Anantha-
narayanan, Michael Maire, Henry Hoffmann, Ari Holtzman, and
Junchen Jiang. 2024. CacheGen: KV Cache Compression and Streaming
for Fast Large Language Model Serving. In Proc. ACM SIGCOMM.
Michael Luo, Xiaoxiang Shi, Colin Cai, Tianjun Zhang, Justin Wong,
Yichuan Wang, Chi Wang, Yanping Huang, Zhifeng Chen, Joseph E
Gonzalez, and Ion Stoica. 2025. Autellix: An Efficient Serving Engine
for LLM Agents as General Programs. abs/2502.13965 (2025).

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM computer communication review (2008).

Robert Morris, Eddie Kohler, John Jannotti, and M Frans Kaashoek.
1999. The Click modular router. In Proc. ACM SOSP.

Michal Moskal, Madan Musuvathi, and Emre Kiciman. 2024. Al Con-
troller Interface. https://github.com/microsoft/aici/.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-Tau
Yih, Sida I. Wang, and Xi Victoria Lin. 2023. LEVER: Learning to Verify
Language-to-Code Generation with Execution. In Proc. ICML.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and
Yu Wang. 2024. Skeleton-of-Thought: Prompting LLMs for Efficient
Parallel Generation. In Proc. ICLR.

OpenAl 2023. Parallel Function Calling. https://platform.openai.co
m/docs/guides/function-calling Accessed: 2024-10-26.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikar-
pova, and Loris D’Antoni. 2024. Grammar-Aligned Decoding. In Proc.
NeurIPS.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differentiation in pytorch. In Proc.
NIPS Wrkshp. Autodiff.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez.
2024. Gorilla: Large Language Model Connected with Massive APIs.
In Proc. NeurIPS.

Simon Peter, Jialin Li, Irene Zhang, Dan R K Ports, Doug Woos, Arvind
Krishnamurthy, Thomas E Anderson, and Timothy Roscoe. 2014. Ar-
rakis: The Operating System is the Control Plane. In Proc. USENIX
OSDI.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee,
and Ashish Panwar. 2025. vAttention: Dynamic Memory Management
for Serving LLMs without PagedAttention. In Proc. ACM ASPLOS.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Keshav Santhanam, Deepti Raghavan, Muhammad Shahir Rahman,
Thejas Venkatesh, Neha Kunjal, Pratiksha Thaker, Philip Alexander
Levis, and Matei Zaharia. 2024. ALTO: An Efficient Network Orches-
trator for Compound Al Systems. In Proc. ACM EuroMLSys at EuroSys.
Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca,
Michele Mancusi, Riccardo Marin, and Emanuele Rodola. 2023. Accel-
erating Transformer Inference for Translation via Parallel Decoding.
In Proc. ACL.

Apoorv Saxena. 2023. Prompt Lookup Decoding. https://github.com
/apoorvumang/prompt-lookup-decoding/

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria
Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. Toolformer: Language Models Can Teach Themselves
to Use Tools. In Proc. NeurIPS.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. FlexGen: High-Throughput Generative Inference of Large Lan-
guage Models with a Single GPU. In Proc. ICML.

Didac Suris, Sachit Menon, and Carl Vondrick. 2023. ViperGPT: Visual
Inference via Python Execution for Reasoning. In Proc. IEEE ICCV.
Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, Zhelin
Zhu, and Bin Luo. 2022. AST-trans: Code summarization with efficient
tree-structured attention. In Proc. ACM/IEEE ICSE.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Riviére, Mi-
hir Sanjay Kale, Juliette Love, et al. 2024. Gemma: Open models based
on gemini research and technology. arXiv preprint arXiv:2403.08295
(2024).

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. 2024.
Solving olympiad geometry without human demonstrations. (2024).
Hongyu Wang, Shuming Ma, Li Dong, Shaochan Huang, Huaijie Wang,
Lingxiao Ma, Fan Yang, Ruiping Wang, Yi Wu, and Furu Wei. 2023.
BitNet: Scaling 1-bit Transformers for Large Language Models. CoRR
abs/2310.11453 (2023).

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen
Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al. 2024. A
survey on large language model based autonomous agents. Frontiers
of Computer Science (2024).

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li,
Hao Peng, and Heng Ji. 2024. Executable Code Actions Elicit Better
LLM Agents. In Proc. ICML.

Wasmtime Project. 2025. PoolingAllocationConfig — Wasmtime API
Documentation. Wasmtime Documentation. https://docs.wasmtime.
dev/api/wasmtime/struct.PoolingAllocationConfig.html Accessed:
2025-08-26.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang,
Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023.
AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Con-
versation Framework. abs/2308.08155 (2023).

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike
Lewis. 2024. Efficient Streaming Language Models with Attention
Sinks. In Proc. ICLR.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan
Cao, and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models. In Proc. NeurIPS.
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R
Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and
Acting in Language Models. In Proc. ICLR.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. 2024. ChunkAttention:
Efficient Self-Attention with Prefix-Aware KV Cache and Two-Phase
Partition. In Proc. ACL.

https://github.com/langchain-ai/langchain
https://www.langflow.org/
https://ebpf.io/
https://ebpf.io/
https://github.com/microsoft/aici/
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://docs.wasmtime.dev/api/wasmtime/struct.PoolingAllocationConfig.html
https://docs.wasmtime.dev/api/wasmtime/struct.PoolingAllocationConfig.html

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

(78]

(79]

(80

[t

(81]

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang,
Stephanie Wang, Tiangi Chen, Baris Kasikci, Vinod Grover, Arvind Kr-
ishnamurthy, and Luis Ceze. 2025. FlashlInfer: Efficient and Customiz-
able Attention Engine for LLM Inference Serving. CoRR abs/2501.01005
(2025).

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In Proc. USENIX OSDL
Lingfan Yu, Jinkun Lin, and Jinyang Li. 2025. Stateful Large Language
Model Serving with Pensieve. In Proc. EuroSys.

Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis,
Heather Miller, Chris Potts, James Zou, Michael Carbin, Jonathan
Frankle, Naveen Rao, and Ali Ghodsi. 2024. The Shift from Models to
Compound Al Systems. https://bair.berkeley.edu/blog/2024/02/18/co
mpound-ai-systems/.

[82]

[83]

[84]

[85]

Gim et al.

ZeroMQ Community. 2023. libzmq: ZeroMQ core engine in C++.
https://github.com/zeromgq/libzmgq.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Au-
tomating Inter- and Intra-Operator Parallelism for Distributed Deep
Learning. In Proc. USENIX OSDIL

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff
Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica,
Joseph E Gonzalez, Clark W Barrett, and Ying Sheng. 2024. SGLang:
Efficient Execution of Structured Language Model Programs. In Proc.
NeurlIPS.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii
Khizbullin, and Jurgen Schmidhuber. 2024. Gptswarm: Language
agents as optimizable graphs. In Proc. ICML.

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://github.com/zeromq/libzmq

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 How LLM serving systems work
	2.2 Limitations of existing serving systems

	3 Overview of Pie
	4 Programming Model and API
	4.1 Abstractions
	4.2 APIs
	4.3 Supporting agentic workflows
	4.4 API extensibility

	5 System Architecture
	5.1 Application layer
	5.2 Control layer
	5.3 Inference layer

	6 Implementation
	6.1 Adaptive batch scheduling
	6.2 API handlers
	6.3 Support library

	7 Evaluation
	7.1 Serving agentic workflows
	7.2 Customizing generation strategies
	7.3 Replicating existing serving features
	7.4 System overhead analysis

	8 Discussion and Limitations
	9 Related Work
	9.1 Application-aware LLM serving
	9.2 Programming LLM behavior
	9.3 Efficient Transformer inference

	10 Conclusion
	References

