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Abstract—Energy efficiency has become increasingly important
to mobile systems on which wireless interfaces are among the
largest power consumers. While existing physical layer power
optimization mostly focuses on improving the transmission effi-
ciency, our recent work has showed that wireless interfaces can
spend most of its time and energy in very short idle periods
between transmitting two packets [9]. In this work, we present a
physical layer optimization method, drowsy transmission, which
explicitly considers the power cost of such idle periods in
physical layer power optimization through joint power con-
trol/rate selection and power management. We provide a control
theoretical formulation of the optimization problem and present a
dynamic programming based solution and its approximation that
is close form and practical. We further offer an on-line learning
technique to cope with unknown channel and traffic. Using
a power model from a commercial wireless network interface
card, we demonstrate that drowsy transmission can reduce the
energy per bit by 70% and 40% in comparison to power
control/rate selection-based optimization and optimization with
disjoint power control/rate selection and power management,
respectively . Moreover, the achieved energy per bit is very
close to the theoretical lower bound. Our evaluation shows that
the proposed on-line learning technique can assess the channel
and approach the performance under pre-known channel in as
short as 200ms. We also show that our optimization introduces
negligible packet delays.

I. INTRODUCTION

Limited battery capacity and heat dissipation capability have
made energy efficiency a critical concern to the design of mod-
ern mobile systems. Wireless interfaces are among the largest
power consumers on mobile systems [14]. In this work, we
aim at improving their energy efficiency by jointly optimizing
the energy consumption in transmission time and in idle time
through a combination of hardware power management and
conventional power-saving mechanisms at the physical layer,
namely power control and rate selection.

Numerous techniques have been investigated to improve the
energy efficiency of various layers of wireless communica-
tion systems. Most physical (PHY) layer solutions focus on
reducing the energy consumption for transmission by using
transmit power control, rate selection or both [12]. These
solutions either completely ignore the energy cost in idle time
or assume fixed power consumption, e.g. see [5], [6], [12],
[17]. As we have showed recently [9], wireless interfaces can
spend a very high percentage of time and energy in short idle
periods even during active transmission time. Such short idle
periods, as below tens of milliseconds, are out of the reach
of conventional power-saving mechanisms provided by higher
layers of the protocol stack, such as IEEE 802.11 MAC Power-

Saving Mode (PSM), other proposed power-saving protocol,
e.g. [8], and application-specific solutions, e.g. [4], [16].

Physical layer decisions, such as power control and rate
selection, essentially determine the pattern of such idle pe-
riods, given the traffic from the upper layers. Consequently,
they significantly impact the energy-saving opportunities in
the idle periods through power management. In this work,
we seek to jointly optimize idle time power management
and transmission time power control/rate selection, subject to
traffic and channel dynamics. The optimization essentially pro-
duces optimized idle period patterns and selects the best sleep
mode for each idle period between two packet transmissions.
We call it drowsy transmission because the wireless interface
enters sleep modes even during active transmission. We for-
mulate the optimization as a control problem and provide a
dynamic programming based approximating solution. Using
power models from a commercial wireless interface, we show
that the joint optimization can significantly reduce the energy
per bit transmission up to 40% with idle time considered
in comparison to separate optimization of power control/rate
selection and idle time power management, depending on
the data rate. More importantly, we show that the energy
per bit achieved by the proposed optimization is very close
to the theoretical lower bound set by optimization in which
traffic and channel dynamics are assumptively pre-known.
We further provide on-line learning and adaptive solutions to
accommodate unknown traffic and channels.

Our work represents a radically different approach to the
energy optimization of wireless communication systems by
applying power management to physical layer energy opti-
mization. Our work highlights that energy consumptions in
transmission time and idle time are highly correlated and
disjoint optimization is suboptimal. The proposed problem
formulation and approximate solutions can be readily applied
to the physical layer implementation of existing wireless
technologies, such as 802.11 and 3GPP.

The rest of the paper is organized as follows. In Section II,
we provide background information and address related work.
In Section III, we present the problem formulation of drowsy
transmission along with the wireless power model used and
the assumptions made. We offer a dynamic programming
based approximate solution to the problem in in Section IV
and an on-line learning technique for coping with unknown
traffic and channels in Section V. We provide the experimental
evaluation of the proposed techniques in Section VI, discuss
the limitations of our work and conclude in Section VII.
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II. BACKGROUND AND RELATED WORK

A. Power Profile of Wireless Interfaces

Wireless transmission on mobile systems is drastically more
power-hungry than reception, often requiring multiple times
more energy per bit. As a result, much of the wireless energy
optimization focuses on transmission power, mainly through
physical layer mechanisms such as power control and rate
selection, which set the transmission signal power and choose
the modulation method, respectively.

Many modern wireless interfaces are designed for very high
peak data rates, which are rarely achieved in practice due
to bottle-necks in the rest of the system and network. This
leads to abundant brief idle periods even during busy time of
the wireless interfaces, as highlighted in [9]. Power control
and rate selection have an essential impact on the pattern of
such idle periods. For example, higher rates and transmission
power are likely to lead to longer idle periods because the
wireless interface can send out the data faster. While existing
physical layer energy optimization often ignores the energy
consumption of such idle periods, our prior work showed that
it can account for over 80% of total energy consumption of
wireless interfaces during busy time [9].

Meanwhile, modern wireless interfaces support power-
saving modes in which an interface is no longer functional but
consumes dramatically less power. Many power-saving modes
only take multiple microseconds to multiple milliseconds to
wake up, thus making it possible to put the interface into a
power-saving mode for as short as several microseconds yet
still save energy [9]. Usually, a deeper power-saving mode, i.e.
more power reduction and longer wakeup latency, requires a
longer idle period to be profitable. On the other hand, it may
save more energy for a longer idle period.

Transmission energy optimization and idle period energy
optimization can be at odd with each other: slower transmis-
sion through lower transmit power or rate may lead to lower
energy per bit in transmission; but it may also lead to shorter
idle periods in which less energy can be saved because deeper
power-saving modes cannot be applied. Drowsy transmission
is about making the best tradeoff between them through a joint
optimization of transmission power control/rate selection and
idle period power management.

B. Physical Layer Energy Optimization

Physical layer energy optimization of wireless communi-
cation systems traditionally focuses on energy consumption
of transmission, while ignoring the energy consumption in the
idle periods between two transmissions or assuming a constant
power consumption [5], [6], [12], [17].

Transmit power control and rate selection are two most
widely studied mechanisms for reducing transmission energy
cost. The authors of [12] provided an excellent survey of en-
ergy optimization work using power control and rate selection.
They also investigated joint optimization of power control
and rate selection based on an energy model. The authors of
[13] investigated packet scheduling with dynamic modulation
scaling, an incarnation of rate selection.

In [9], we showed that idle periods between transmissions
during busy time of wireless interfaces can consume a large
share of overall energy and more importantly, we showed that
many of these idle periods are long enough to benefit from
power-saving modes supported by modern wireless interfaces
and proposed a MAC layer solution, µPM. However, µPM
does not employ any physical layer mechanisms, such as
power control and rate selection. As a result, it does not
change the inter-frame idle periods or reduce transmission
energy cost. In contrast, drowsy transmission presented here is
based on joint optimization that leverages power control and
rate selection to change such idle periods in order to achieve
better tradeoffs between energy costs for transmission and the
idle periods.

Our methodology also echoes the joint optimization of
dynamic voltage scaling (DVS) and power management of
processors [11], [15]. However, the joint optimization for
processors may not be applied to wireless interfaces because
of channel dynamics. That is, when a task is executed by a
processor, it is assumed to be finished deterministically. In
contrast, when a packet is transmitted by a wireless interface,
it has a certain chance of loss due to channel uncertainty.
As a result, the joint optimization for wireless interfaces, as
addressed in this work, is considerably more complicated.

III. PROBLEM FORMULATION

A. Assumptions

For simplicity of analysis, we make the following assump-
tions for the problem formulation of drowsy transmission.

• The system is time slotted. The duration of each time slot
is denoted by Ds. At the beginning of a slot, the wireless
interface makes control decisions regarding its state.

• The length of packets is constant. We denote by L the
number of information bits within each packet. Different
packets are transmitted separately and are not aggregated
into one. The random process of packet arrivals is sta-
tionary; and we denote the expected number of arriving
packets within one time slot by λ. We assume that λL

Ds
,

i.e. the average number of arriving bits per second, is
smaller than average channel capacity such that the data
traffic can be stabilized. Denoting by An:m (n ≤ m) the
number of arriving packets during time slots n and m
(both included), we have E [An:m] = λ(m−n+1) (note
that An:m is a random variable). We consider elastic data
traffic, i.e. there are no deadlines for the deliveries of
data packets. Therefore, the wireless interface considers
only energy efficiency. We also assume that buffer size
is limited and denote by Xmax the maximal number of
packets that the buffer can contain.

• We assume that current channel condition, denoted by
Cn at time slot n, is known (maybe partially) at the
wireless interface, as well as the statistics of the random
process of channel condition. We denote by Cn:m channel
conditions from time slot n to m (both included). In
practical systems, this assumption can be achieved by
allowing feedback of channel state information in a
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Fig. 1: State diagram of wireless interface.

channel quality index (CQI) channel, as in many systems
like WiMAX, WCDMA and cdma2000.

• We assume that transmit power and transmission rate
do not change during the transmission of one packet.
This assumption is reasonable since the wireless inter-
face cannot receive channel condition information during
transmission due to half-duplex constraint.

• We do not consider the energy consumption by the com-
puting of control decisions. This is reasonable because
modern baseband processors are much more efficient in
comparison with the wireless interface. They are also fast
enough such that the time overhead is negligible.

• We assume that there is no incoming packet because our
focus is on power optimization of transmission. However,
we can also include the cost of missing incoming packets
into the cost function and compute the optimal control
policy via dynamic programming, which is beyond the
scope of this paper.

Note that these assumptions capture the essence of energy
optimization. The framework proposed in this paper can be
however extended to more general cases. For example, we
can add corresponding penalty to cost function, which will
be discussed in following sections, to address the latency
of real-time data traffic. When considering packet reception
procedure, we can incorporate the prediction of incoming
packets from another wireless interface.

B. Power Model of Wireless Transceiver

We assume that the wireless interface can be in one of
three operational modes: transmit, idle, and sleep, denoted
by T , I and

{Sk
}

k
, as is typically for modern commercial

wireless transceivers. The sleep mode has K sub modes, which
are implemented with the power-saving modes supported in
hardware [1], [10]. When the interface is not transmitting,
it immediately enters the idle mode in which it can capture
incoming data. While in the idle mode, the interface can
determine whether to enter a sleep mode and which one to
enter. Transitions between two modes engender fixed latencies
and fixed energy overheads. For the transition from sleep mode
to transmit mode, the more power saving a sleep mode, the
higher latency and energy overhead. The mode transitions are
illustrated in Fig. 1.

Idle mode consumes more power, denoted by PI , than sleep
mode, denoted by PSk , k = 1, ...,K. For transmit mode,
the transmit power, denoted by PT can be set under the

constraint of PT < Pmax. The transmission rate is denoted by
R, measured in bits/second. Besides the transmit power, the
device also consumes an overhead power PO. In summary, the
power consumption is given by PT = PT + PO in transmit
mode, PSk in sleep mode k, PI in the idle mode. EM1→M2

denotes the energy overhead when switching from mode M1

to mode M2. We also denote by TM1→M2 the number of time
slots needed for switching from mode M1 to mode M2.

C. Problem Formulation
Intuitively, our problem is how to control the wireless

interface to achieve an energy efficient transmission under the
constraint of a buffer of fixed, limited length for outgoing
packets. For such a control problem, we first need to clarify
its control and state spaces.

1) Control Space: The wireless interface can take the
following possible control actions.
• Transmit power and rate: at time slot n, we denote

transmit power by PT (n) and transmission rate by Rn,
respectively. We also denote by ζ(PT , R, C) the binary
random variable that equals 1 when succeeding in trans-
mitting a packet and equals 0 otherwise, when using
transmitting power PT and transmission rate R, provided
current channel condition C. Note that the randomness
of ζ(P, R,C) lies in future channel conditions.

• Mode selection: when there are packets in the buffer,
the interface should always stay in or transit to transmit
mode; when the buffer is empty and the mode is transmit,
it enters the idle mode immediately and then decides
whether to enter a sleep mode and which one. For time
slot n, we denote by Nn the decision on the mode in the
next decision time slot.

Based on the above notations, we denote by µn the 3-tuple
of control actions (PT (n), Rn, Nn) at time slot n and denote
the whole control space by Ω.

2) State Space: The state of the wireless interface depends
on the number of packets in the buffer, denoted by Xn at time
slot n. In the transmit mode, the evolution of state Xn is given
by

Xn+d = min {Xn − ζ (PT (n), Rn, Cn:n+d−1)
+ An:n+d−1, Xmax} , when Xn > 0, (1)

where d =
⌈

L
RnDs

⌉
is the number of time slots needed to

convey a packet and

Xn+1 = min {A (n : n) , Xmax} , when Xn = 0. (2)

The evolution of Xn in other modes can be derived similarly.
Other factors of the system are the wireless channel con-

dition Cn and the current operational mode Mn. Therefore,
we denote by a 3-tuple Sn = (Mn, Xn, Cn) the state of
the wireless interface at time slot n. Note that, in practical
systems, the random processes of packet arrivals and channel
conditions may not be Markovian, i.e. the future may be also
dependent on the history besides the current state. However,
it is difficult to incorporate all history into the state due to
limited memory. Therefore, we can approximate the practical
case by considering the current buffer situation and channel
condition as the system state.
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3) Cost Function: Essentially, the control policy targets
at maximizing the energy efficiency, i.e. using the minimal
average energy to convey data packets. Therefore, we define
the cost function as

J = lim
T→∞

1
T

T∑
t=1

E [Et + κI(Xt = Xmax)] , (3)

where Et is the energy consumed during time slot t, I(Xt =
Xmax) is the characteristic function of the event that the buffer
cap is reached and κ is the corresponding penalty. The purpose
of the term κI(Xt = Xmax) is to provide an incentive for the
wireless interface to transmit packets for avoiding the penalty.
Otherwise, the optimal control policy is to stay in a sleep
mode that minimizes the total energy consumption and does
not transmit at all.

Based on the cost function definition, we minimize the
energy consumption by solving the following optimization
problem:

µ∗ = arg min
µ∈Ω

J(µ), (4)

where µ , (µ1, µ2, ...) means the whole control policy and J
is obviously a functional of µ.

IV. DYNAMIC PROGRAMMING BASED OPTIMIZATION

In this section, we present a dynamic programming-based
solution to optimize the control policy.

A. Brief Introduction of Dynamic Programming
Essentially, dynamic programming finds the optimal state

path in the trellis derived from the state diagram in Fig.1. In
dynamic programming, we define a cost function for the whole
system and one cost-to-go function for each time slot. The
cost-to-go function is the expected cost from current time slot
to final time slot. We can compute the cost-to-go functions in
an iterative manner and then obtain the optimal control policy
by selecting the next state that has the minimal cost-to-go
function. The details of dynamic programming can be found
in [3].

B. Modified Cost Function
We apply dynamic programming to solve the optimization

problem in (3) and thus obtain the control policy. Note that,
based on our definition of state, dynamic programming may
not achieve optimal performance when the packet arrival and
channel condition processes are non-Markovian. However, as
will be seen in Section VI, the results obtained from dynamic
programming are close to optimal performance with non-
causal knowledge of data traffic and channel condition that
is infeasible in practical systems.

One difficulty of applying dynamic programming to the
optimization problem in (3) is that the summation in (3)
diverges to infinity as T → ∞. Therefore, we modify the
cost function slightly by adding a weighting factor to each
term, which is given by

J , (1− α) lim
T→∞

T∑
t=1

αt−1E [Et + κI(Xt = Xmax)] , (5)

where 0 < α < 1 is a weighting factor. Thus, the summation
in (5) is upper bounded. It is easy to verify that the modified
cost function in (5) converges that in (3) as α → 1. Therefore,
we usually set α close to 1.

C. Cost-to-go Functions

The fundamental machinery in dynamic programming is
cost-to-go functions from which the control policy is derived.
First, we study the finite horizon case in which the total
number of time slots, T , is bounded. Then, we extend to
infinite horizon case, i.e. T →∞.

1) Finite Horizon Case: When T is bounded, we define the
cost-to-go functions as

Jn(Sn) , 1− α

αn−1
min

µ

T∑
t=n

αt−1E [Et + κI(Xt = Xmax)] . (6)

Intuitively, Jn(Sn) means the minimal average cost from time
slot n to time slot T , provided that the state at time slot n is
Sn. It is easy to verify that the modified cost function in (5)
is equal to E [J1(T , 0, C1)], where the expectation is over all
possible realizations of channel condition C1, provided that
the interface begins from transmit mode and empty buffer.

Due to Bellman’s optimality principle [2], the optimal cost-
to-go functions can be computed recursively:

Jn(Sn) = min
µ
{(1− α) (En:m + E [κI(Xm = Xmax)])

+ αE [Jm(Sm)]} , (7)

where m is the next decision time slot which is a function of
the control policy and En:m is the energy consumption during
time slots n and m, and the final condition is given by

JT (ST ) = (1− α) (ET + κI(XT = Xmax)) . (8)

By computing the optimal cost-to-go functions, the corre-
sponding control policy is also obtained implicitly during the
procedure of minimization.

2) Infinite Horizon Case: In practical wireless interfaces,
the operation time can be considered as infinite. Therefore,
the assumption that T is bounded in the finite horizon case is
unreasonable. Moreover, the number of cost-to-go functions is
proportional to T , thus requiring prohibitively large memory
to store corresponding control policies. Therefore, we need
to extend the finite horizon case to infinite horizon case, i.e.
T →∞, which is justified by the following proposition, whose
detailed proof is ignored due to limited space.

Proposition 1: For all n and all S, Jn(S) converges as T →
∞.

Based on Prop. 1, the cost-to-go function Jn(S) is no longer
dependent on time slot index n, as T →∞, thus can be written
as J(S). Based on (6) and (7), J(S) is given by

J(S) = (1− α)min
µ

∞∑
t=1

αt−1E [Et + κI(Xt = Xmax)]

= min
µ

E
[
(1− α)(Ẽ + κI(X̃ = Xmax)) + αJ(S̃)

]
,(9)

where X̃ is the number of packets in the buffer at the next
decision time slot and Ẽ is the energy consumption between
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the two decision time slots. The number of cost-to-go functions
is equal to the number of states, thus substantially less than
that of the finite horizon case.

Now, we discuss the computation of cost-to-go functions
in the follows six situations. Without loss of generality, we
assume that the current time slot index is 1 since the control
policy is time-shift-invariant in the infinite horizon case.
Therefore, the current state is denoted by (M, X,C1).
Transmit Mode with Non-empty Buffer: when the current
mode is transmit and the buffer is non-empty, the control
action is to choose optimal transmit power and transmission
rate. When using transmit power PT and transmission rate R, it
needs τ =

⌈
L

RDs

⌉
time slots to complete the transmission. The

corresponding energy consumption is Ẽ = τDs(PT + PO).
Recall that ζ (PT , R, C1:τ ) is the random variable represent-

ing the success of packet transmission and A1:τ is the number
of newly arriving packets. Therefore, the number of packets in
the buffer at the next decision time slot is a random variable,
which is given by

X̃ = min {X + A1:τ − ζ (P, R, C1:τ ) , Xmax} . (10)

Correspondingly, the state at the next decision time slot is
given by S̃ =

(
T , X̃, Cτ+1

)
. Therefore, the corresponding

cost-to-go function is given by

J (T , X, C1) = min
PT ,R

E
[
(1− α)(Ẽ + κI(X̃ = Xmax))

+ αJ(S̃)
]
. (11)

Transmit Mode with Empty Buffer: when the current mode
is transmit and the buffer is empty, the wireless interface
should transit from transmit mode to idle mode. It requires
TT→I time slots and energy ET→I . The number of pack-
ets in the buffer at the next decision time will be X̃ =
min {A1:TT→I , Xmax}. Therefore, the cost-to-go function is
given by

J (T , 0, C1)

= (1− α)
(
ET→I + κE

[
I(X̃ = Xmax)

])

+αE
[
J

(
I, X̃, CTT→I+1

)]
. (12)

Idle Mode with Non-empty Buffer: when the current mode
is idle and the buffer is non-empty, the wireless interface
should return to transmit mode. Recall that the number of time
slots needed for transiting from idle mode to transmit mode is
TI→T and the corresponding energy consumption is EI→T .
The number of packets in the buffer at the next decision time
slot is given by X̃ = min {X + A1:TI→T , Xmax}. Therefore,
the corresponding cost-to-go function is given by

J (I, X, C1) = (1− α)
(
EI→T + κE

[
I(X̃ = Xmax)

])

+ αE
[
J

(
T , X̃, CTI→T +1

)]
. (13)

Idle Mode with Empty Buffer: when the current mode is idle
and the buffer is empty, the wireless interface needs to decide
whether to remain in idle mode or transit to sleep mode. If the
decision is sleep mode, it should choose the most suitable sleep
mode since there are K sleep modes. If the wireless interface
chooses to remain in idle mode, then the next decision will be

made at time slot 2. The corresponding number of packets will
be X̃I = min{A1:1, Xmax} and the energy consumption is
PIDs. If the wireless interface decides to transit to sleep mode
k, then the next decision will be made at time slot TI→Sk +1.
The corresponding number of packets in buffer will be X̃k

S =
min

{
A1:TI→Sk

, Xmax

}
and the energy consumption will be

EI→Sk . Then, the cost-to-go function is

J (I, 0, C1)

= min
{

(1− α)
(
PIDs + κE

[
I(X̃I = Xmax)

])

+ αE
[
J

(
I, X̃I , C2

)]
,

min
k

{
(1− α)

(
EI→Sk + κE

[
I(X̃k

S = Xmax)
])

+ αE
[
J

(
Sk, X̃k

S , CTI→Sk +1

)]}}
. (14)

Sleep Mode with Non-empty Buffer: when the buffer is non-
empty, the wireless interface should return to the transmit
mode. Suppose the wireless interface is in the k-th sleep
mode. The transition needs TSk→T time slots and the energy
consumption is ESk→T . The number of packets in the buffer
at the next decision time slot is X̃ = min

{
A1:TSk→T , Xmax

}
.

Thus, the cost-to-go function is given by

J
(
Sk, X, C1

)

= (1− α)
(
ESk→T + κE

[
I(X̃ = Xmax)

])

+ αE
[
J

(
T , X̃, CTSk→T +1

)]
. (15)

Sleep Mode with Empty Buffer: when there is no packet in
the buffer, the wireless interface can choose to remain in sleep
mode or transit to transmit mode. Without loss of generality,
we suppose that the current sleep mode is k. If remaining in
sleep mode, the next decision will be made at time slot 2,
the energy consumption is PSkDs and the number of packets
in the next decision time slot is X̃S = min{A1:1, Xmax}. If
transiting to transmit mode, the next decision will be made
at time slot TSk→T . The energy consumption is ESk→T . The
number of packets in the next decision time slot is X̃T =
min

{
A1:TSk→T , Xmax

}
. Hence, the corresponding cost-to-go

function is given by

J
(Sk, 0, C1

)

= min
{

(1− α)
(
PSkDs + κE

[
I(X̃S = Xmax)

])

+ αE
[
J

(
Sk, X̃S , C2

)]
,

(1− α)
(
ESk→T + κE

[
I(X̃T = Xmax)

])

+ αE
[
J

(
T , X̃T , CTSk→T +1

)]}
. (16)

D. Computation of Cost-to-go Functions
For general cases, it is impossible to obtain an explicit

expression for the cost-to-go functions. Therefore, we can
only compute them using the iterative equations (11) – (16)
numerically, i.e. substituting cost-to-go functions obtained in
the previous iteration to the right hand side of the equations,
computing new cost-to-go functions and stopping when a
certain rule is satisfied. It is well known that the iterations
converge for any initialization of the cost-to-go functions [3].
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E. Extension to Real-time Traffic
As indicated in Section III, we assume that the data traffic

is elastic, thus not considering the transmission delay in the
cost function. However, transmission delay is a key issue
in real-time data traffic (e.g. wireless video streaming). Our
framework of dynamic programming can also be extended
to meet the requirement of real-time data traffic. First, we
need to extend the state space. Suppose that there are X
packets in the buffer. We denote by d1, ..., dX their times-
to-go, i.e. the differences between the deadlines and current
time (measured in time slots). For packet k, the evolution of
dk is dk(m) = dk(n) − (m − n), where m > n are indices
of time slots, when dk(n) ≥ (m− n). If dk = 0, we remove
this packet from the buffer since it has missed its deadline. By
adding a penalty for the event of missing deadline, we revise
the cost function in (5) to

J , (1− α) lim
T→∞

T∑
t=1

αt−1

E

[
Et + κI(Xt = Xmax) + γ

Xt∑

k=1

I(dk(t) = 0)

]
,(17)

where γ is a constant representing the penalty of missing
deadline. Due to limited space, detailed discussion and exper-
imental results are beyond the scope of this paper.

V. SELF-LEARNING AND APPROXIMATE DYNAMIC
PROGRAMMING

In Section IV, the computation of cost-to-go functions is
based on the assumption that the distribution of packet arrival
time and channel condition are known. However, under realis-
tic situations, both the channel and the data traffic property can
be time-varying. Therefore, the wireless interface should adapt
its controlling policy based on the channel and data traffic.
Therefore, we employ approximate dynamic programming to
reduce the requirement of estimation and computation.

A. Approximate dynamic programming
We apply the Certainty Equivalence Control (CEC) [3] to

simplify the computation of cost-to-go functions. The basic
idea of CEC is to replace random variables in the computation
of cost-to-go functions with their expectations, thus removing
the computation of numerical integrals and converting the
stochastic control into a deterministic one. Then, the com-
putation of cost-to-go functions in (7) is changed to

J(S) = min
µ

{
(1− α)(Ẽ + κI(E[X̃] = Xmax)) + αJ(E[S̃])

}
, (18)

where E[S̃] = (M, E[X̃], E[C̃]) is the expected state (note
that the next mode is not a random variable since it is
determined by the control policy), E[X̃] and E[C̃] are the
expectations of the number of packets in the buffer and channel
condition at the next control time slot.

The CEC simplification is an approximation of the op-
timal dynamic programming in Section IV and thus incurs
performance loss. However, we only need to estimate the
expectations for the unknown channel and data traffic, e.g. the
average number of arriving data packets and the expectation
of channel condition given the current channel condition. The
computation of the expectations requires much less time and
incurs considerably less overhead. Moreover, the computation

of cost-to-go functions and control policies is even more
efficient because the numerical integrals in optimal dynamic
programming case are avoided.

We further assume that the channel condition process is a
martingale, i.e.

E [Ct+1|Ct] = Ct. (19)

Then, we can use current channel condition to predict future
channel conditions. This assumption is reasonable for slow
fading channels. Then, the only parameter we need to estimate
is λ, whose estimate is denoted by λ̂, thus substantially
reducing the amount of parameters to be estimated. Due
to limited space, the detailed expressions of the cost-to-go
functions are ignored.

VI. EXPERIMENTAL EVALUATION

A. Policies for Comparison

We evaluate drowsy transmission based on the proposed
joint optimization, or Joint case, against four other alternative
cases. In the first case, the wireless interface is optimized in
power control and rate selection, given the traffic statistics and
channel conditions; it, however, does not enter any sleep mode
during idle time between consecutive transmissions. This is the
case for existing physical layer power optimization techniques,
which optimize transmission power without considering power
management opportunities in idle periods during busy time.
We use this as the baseline for comparison and call it the
Baseline case.

In the second case, the interface is jointly optimized in
power control/rate selection and idle period power manage-
ment, with the exact traffic and channel conditions pre-known.
This case is idealistic and its power saving serves as the
theoretical upper bound for evaluating the proposed joint
optimization. We call it the Perfect case 1.

In the third case, the data traffic and channel conditions
are also known a priori. However, the power/rate selection
is optimized without awareness of idle and sleep modes. In
contrast to the Baseline case, the wireless interface enters idle
or sleep mode when there is no packet in the buffer. We call
it the Perfect case 2.

In the fourth case, the interface is separately optimized in
power control/rate selection and idle period power manage-
ment, given the traffic statistics and channel condition. That is,
the optimization is carried out in two disjoint stages: the power
control and rate selection are first optimized for power using
dynamic programming; then the best sleep mode is selected
based on observing the pattern of the idle periods. This case
is a simplistic combination of optimizations of transmission
energy and idle energy. We call it the Disjoint case.

As we will show below that drowsy transmission can reduce
power consumption significantly in comparison to the Baseline
and Disjoint cases, achieving efficiency very close to the
Perfect cases.

B. Performance Metrics

We evaluate optimization solutions with energy per bit and
packet delay. Energy per bit refers to the average energy
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consumption by the wireless interface for transmitting one bit,
which includes not only the transmission energy cost but also
the energy spent during idle periods between two consecutive
transmissions. It is important to note that our work targets at
active time of wireless interfaces; the idle periods are during
active time of the interfaces, not those elongated idle intervals
as targeted by 802.11 MAC Power-Saving Mode.

Because of the optimization of transmission power rate,
the latency overhead of waking up from sleep modes, and
particularly the use of a transmit packet buffer, our joint
optimization can introduce latencies into outgoing packets.
Therefore, we will also examine the cumulative distribution
function (CDF) for packet delays.

C. Experimental Setup

1) Wireless Channel Model: We assume that the system
uses a 4MHz frequency band (denoted by W ), where noise
power density (PSD, denoted by N0) is -174dBm. The channel
gain (including path loss and fast fading), generated from
Jakes fading process [7], ranges from -134dB to -124dB. The
transmit signal power has four levels: 10mW, 40mW, 70mW,
and 100mW; and the aggregated PA and antenna efficiency
is 50%. Therefore, the corresponding power consumption for
RF transmission, PT , is 20mW, 80mW, 140mW and 200mW,
respectively. There are five options for the transmission rate:
1Mbps, 2Mbps, 4Mbps, 6Mbps and 8Mbps. Assuming a com-
plex channel, we can calculate the maximal transmission rate
as C = E

[
W log2

(
1 + PT g

2N0WG

)]
, where g is channel power

gain, G is the gap to Shannon capacity (we assume G = 5dB)
and the expectation is over the channel realization during the
packet transmission. We assume that the transmission succeeds
when C ≥ R and fails when C < R. Since it is impossible to
compute the cost-to-go functions with respect to continuous
channel conditions, we discretize the channel conditions into
15 levels, which is reasonable since the feedback of channel
conditions can only be represented by limited number of bits
in practical systems.

2) Power Model: We implement the power model of
the wireless interface card based on data from a commer-
cial 802.11b interface [1]. The wireless interface consumes
297mW in the idle mode. We assume that its idle mode
consumption is close to the power consumption by the part of
the wireless interface that is independent from the transmission
signal power when it is in the transmit mode, or PO = 297mW.

The wireless interface supports four sleep modes whose
(power consumption, wake latency) are (190mW, 1us),
(70mW, 25us), (60mW, 2ms), and (30mW, 5ms), respectively.
We used this particular wireless interface for our power model
only because its power and latency data are available for
its power-saving modes. Newer wireless transceivers, and
therefore interfaces, usually consume much lower power and
take much shorter time to wake up from sleep modes. Yet
it still holds that the more power-saving in a sleep mode,
the longer the wake-up latency. Therefore, we expect that the
relative power savings reported in our evaluation are still true
for wireless interfaces of the state of the art.
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Fig. 2: Energy per bit, normalized by that of Baseline case
when the data rate is 0.2Mbps (λ = 0.005), versus different
packet arrival rates and control policies

3) Traffic Model: For simplicity, we assume Poisson pro-
cess of packet arrival times. We test different average values
of λ (recall λ means the average number of packets arriving
within one time slot). We assume that L = 4kb (recall that L is
the number of bits within a data packet). We also assume that
the buffer can contain at most 20 data packets, i.e. Xmax = 20.
Therefore, there are totally 20× 15× 6 = 1800 states.

4) Self-learning and Approximate Dynamic Programming:
We assume that the packet arrival process is stationary while
the statistics are unknown. The control policy is initialized as
Disjoint optimization which does not need the knowledge of
λ. The wireless interface updates its estimate of λ every 1000
time slots (thus 0.1s) and then updates the cost-to-go functions
and control policy using three iterations. The performance after
each update is tested using 100000 time slots (duration of 10s).

D. Experiment Results

1) Results with Optimal Dynamic Programming: In the
simulation, the cost-to-go functions are obtained by 100 itera-
tions and the energy consumption is evaluated with 1 million
time slots, which is equal to 100 seconds since we assume
Ds = 0.1ms. The weighting factor α is set to 0.99.

The energy efficiency measured in energy per bit is shown
in Figure 2. Note that the energy efficiencies are normalized
by that of the Baseline case when λ = 0.005 (0.2Mbps).
We observe that the energy efficiency is improved with lower
energy per bit when the traffic becomes busy. This is intuitive
since the wireless interface will spend less percentage of time
and energy in idle periods, as λ is increased. We also observe
that the joint optimization proposed in this paper achieves
much higher energy efficiency than the Baseline scheme and
is very close to the ideal case (Perfect case 1), particularly
when λ is small. The detailed number will be given in Fig. 3.

The energy efficiency is also shown in Figure 3, in which the
energy consumption per bit is normalized by that of the Base-
line case with the same λ. We observe that, compared with
the Baseline case, drowsy transmission based on the proposed
joint optimization scheme consumes much less energy per bit.
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Fig. 3: Energy per bit, normalized by that of Baseline case with
the same λ, versus different packet arrival rates and control
policies
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Fig. 4: Energy per bit, normalized by that of Disjoint case with
the same λ, versus different packet arrival rates and control
policies

For example, the joint optimization case consumes only around
30% and 60% energy compared with the Baseline one when
λ = 0.005 (0.2Mbps) and λ = 0.05 (2Mbps), respectively.
However, this performance gain is decreased as λ increases.

Figure 4 shows the energy consumption per bit of different
schemes, normalized by that of the Disjoint case with the same
λ. Using this figure, we can compare the optimal performances
between jointly optimized and disjointly optimized systems
with causal knowledge of data traffic and channel condition.
We observe that, in the best case (λ = 0.04, i.e. 1.6Mbps),
jointly optimizing the power/rate selection and power manage-
ment can reduce almost half energy consumption per bit. This
performance gain is reduced for larger or smaller λ since the
wireless interface will be dominated by transmit mode when
λ is large and by sleep mode when when λ is small.

Figure 5 shows the percentage of time in different modes
(including transition between two modes) with different data
arrival rates and optimization schemes. We observe that, for
all three data arrival rates, drowsy transmission always results
in more percentage of time in sleep mode, thus substantially

Fig. 5: Percentage of time in different modes and transitions
between modes
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Fig. 6: Cumulative probability function of packet delays

saving energy.
Figure 6 shows the cumulative probability functions (CDF)

of packet delays when data rates are 0.4Mbps (λ =0.01)
and 2Mbps(λ =0.05), respectively. We observe that the joint
optimization statistically yields much shorter delays, which
benefits real-time data transmission.

2) Results with Self-learning and Approximate Dynamic
Programming: Figure 7 shows the energy per bit, normalized
by that of the joint optimization scheme with the channel
condition and traffic statistics given, versus the time used for
self learning (1 update of the estimation of λ and 3 itera-
tions for the approximate dynamic programming every 0.1s)
when λ = 0.01, 0.02, 0.05, 0.09 (0.4Mbps, 0.8Mbps, 2Mbps,
3.6Mbps). We observe that the performance approaches that of
the optimal joint optimization very quickly (e.g. the wireless
interface converges to near-optimal performance in only 0.2
seconds), which implies the practical feasibility of the dynamic
programming based joint optimization.

VII. CONCLUSIONS AND DISCUSSIONS

In this work, we present the first study on how to incorporate
power management of short inter-packet idle intervals into
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Fig. 7: Performance of self-learning and approximate dynamic
programming

energy optimization at the physical layer. We leverage power
control and rate selection for transmission time, and power-
saving modes of wireless interfaces for idle time. The key is
to jointly optimize them to achieve lower energy consumption
for bit transmission with the idle time energy cost considered,
which we call drowsy transmission. We provide a control the-
oretical formulation for drowsy transmission and its dynamic-
programming based solution. We also offer an approximate
but practical implementation of the solution. We present an
adaptive algorithm based on on-line learning to cope with
the dynamic nature of the wireless channel and the traffic.
We evaluate our solutions with communication system models
of industrial strength and power models from commercially
available wireless interfaces. We show that drowsy transmis-
sion can considerably reduce the power consumption of an
active wireless interfaces across a wide range of data rates. It
also achieve energy efficiency very close to the theoretical
upper bound. We further demonstrate the strength of joint
optimization, showing it achieves better energy efficiency than
two separate power optimizations of transmission time and idle
time.

In this work, we focus on the transmission part of wire-
less communication. Yet extending our solutions to including
receiving is possible. In communication systems that are full-
duplex or have predictable receiving activities, e.g. devoted
receiving time slots or predictable incoming traffic, the exten-
sion is straightforward. In such systems, the wireless interface
can be considered as made of a transmitter and a receiver. The
proposed solution can be readily applied to a transmitter with
the time slots for receiving taken consideration. In commu-
nication systems that are half-duplex and do not predictable
receiving activities, e.g. IEEE 802.11, our solution can be com-
bined with techniques that specifically deal with unpredictable
incoming traffic. For example, in [9], we leverage the traffic
statistics to set the allowable unreachable time for a wireless
interface. In the unreachable time, the wireless interface can
ignore incoming packets but replies on the retransmission
mechanism to guarantee reliable communication. Therefore,
the joint optimization solution can be adapted for the joint
power optimization of transmission and the unreachable time.
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