
Towards a Responsive, Yet Power-efficient, Operating System: A Holistic
Approach ∗

Le Yan, Lin Zhong and Niraj K. Jha
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

{lyan,lzhong,jha}@princeton.edu

Abstract
Although computing hardware has become increasingly

more powerful, computer responsiveness is still an impor-
tant issue due to multi-tasking and software bloat. We pro-
pose a holistic approach for improving computer respon-
siveness through user focus-aware resource management
for CPU, memory, disk I/O, and graphics processing. Pre-
vious approaches only address one or two of these prob-
lems simultaneously. To the best of our knowledge, our
work is the first to address disk I/O scheduling for bet-
ter responsiveness. It also offers better solutions for the
other problems. We also exploit the user-perceived la-
tency to perform dynamic voltage scaling of the CPU to
reduce power consumption at run-time without sacrific-
ing responsiveness. We implemented our approach in the
Linux/X Window system (henceforth referred to as Linux/X)
on an IBM Thinkpad R32 laptop with mobile Pentium 4-
M processor, which has two performance levels with dif-
ferent frequency/supply voltage settings: high (30.0W at
1.8GHz/1.3V) and low (20.8W at 1.2GHz/1.2V). Experi-
mental results show that user focus-aware resource man-
agement achieves a significant improvement in computer
responsiveness and some in energy efficiency. For exam-
ple, for TuxRacer, a video racing game, with GpsDrive,
a navigation system, running in the background, it provides
a reduction of 42.0% in user-perceived latency and 7.5% in
energy consumption with respect to the Linux/X system.

1 Introduction
More people are working with computers and for more

hours. Computer responsiveness is not only important for a
pleasant user experience, but also critical for user produc-
tivity [1, 2]. As the computer hardware becomes increas-
ingly powerful, user attention becomes the most precious
computing resource [3]. An unresponsive computer simply
wastes the most precious resource.

Computer responsiveness is important due to multi-
tasking and software bloat [4]. Even if the hardware re-
source is more than adequate for each application, when
multiple applications are running, the resource available to
a specific application becomes inadequate. If an applica-
tion is augmented with new features, extra resources may be
consumed, outweighing the benefit of new features. Man-
aging the hardware resource is primarily a task of the op-
erating system (OS). As we know from our experience,

∗Acknowledgments: This work was supported in part by DARPA un-
der contract no. DAAB07-02-C-P302 and in part by NSF under grant no.
CCF-0428446.

however, existing OSs do not provide satisfactory respon-
siveness on a loaded and/or power-managed system. Mo-
tivated by the limitations of past work, we investigate how
to tackle the unresponsiveness problem in Linux/X based
computers by favoring the X server and processes under
user focus, and managing the CPU, memory, disk, graphics,
and power resources appropriately. Our solutions improve
the responsiveness of a loaded and/or power-managed com-
puter significantly. Unlike previous approaches on com-
puter responsiveness, which address process scheduling and
memory management only, we propose a holistic approach
addressing process scheduling, memory management, disk
I/O scheduling, dynamic voltage scaling (DVS) in the OS,
and X client scheduling in the X Window system. As far
as we are aware, this is the first work to address disk I/O
scheduling for responsiveness. Our focus-aware resource
management kernel module is available for download [5].

The paper is organized as follows. We address related
work in Section 2 and present background material in Sec-
tion 3. In Section 4, we discuss how to manage the CPU,
memory, disk, graphics, and power resources to improve
computer responsiveness. We also describe its implemen-
tation in the Linux/X system. In Section 5, we discuss the
metrics for evaluating focus-aware resource management.
We present experimental results in Section 6. We present
discussions and conclusions in Section 7.

2 Related Work
In the past, interactive applications were primarily tex-

tual and spent a lot of time waiting for user input, and
therefore involved low CPU usage. However, with the
emergence of modern interactive applications, ranging from
video games to sophisticated simulation and virtual reality
environments, interactivity estimation based on either CPU
load [6] or I/O load [7] information has become inaccu-
rate. For example, TuxRacer [8], a video racing game,
involves high CPU usage, 96% on an average. It is both
CPU-bounded and I/O-bounded. Favoring I/O-bounded
processes over CPU-bounded ones cannot provide adequate
support for modern interactive applications.

Unix-like OSs, including Linux, typically base their win-
dowing system on the X Window system [9], in which a
single X server handles graphics processing requests from
all X clients. X client scheduling is, therefore, critical for
any X Window system based computer to be visually re-
sponsive. This is addressed by the X server smart scheduler
in [10]. However, the X server is just a process managed by
the OS and may suffer resource starvation itself. The smart
scheduler addresses this problem partially. Evans et al. [11]



propose to utilize user focus information to identify interac-
tive applications in UNIX. They use a centralized interac-
tive manager in the X Window system to identify interactive
applications. The kernel then gives priority to the interac-
tive applications in scheduling and throttles non-interactive
applications from memory to reduce scheduling and page
fault latencies, which are only two of the major contributors
to user-perceived latency, as described in Section 3.1.

As power consumption has become a critical concern for
mobile computers, dynamic power management (DPM) and
DVS techniques have attracted a lot of attention. However,
they may aggravate computer unresponsiveness, since ap-
plications have to run with less hardware capacity. Some
works [12–15] target interactive applications and utilize
user-perceived latency to evaluate their approaches. In [16],
user-perceived latency is proposed to be used to drive DVS,
which offers more room for DVS without harming com-
puter responsiveness.

3 Computer Responsiveness
In this section, we present some background material on

computer responsiveness and discuss how the Linux/X sys-
tem tackles it.

3.1 User-perceived Latency
A user can only interact with one application at a given

time. Such an application is said to be under user focus.
How responsive the application under user focus is and how
swiftly the focus can be switched determine computer re-
sponsiveness. Most experiences of unresponsiveness come
from interactive applications, in which the user expects im-
mediate visual causality between user input and computer
response. Human beings generally do not feel any delay be-
tween the “cause,” e.g., pressing the mouse button, and the
“effect,” e.g., a menu window popping up, if the delay is be-
low the human-perceptual threshold (a value of 50-100ms is
commonly used [17, 18]).

The time it takes a computer to execute code to respond
to a user input is called the user-perceived latency. If the
code is executed in an uninterrupted fashion, the latency
is minimal and determined purely by hardware capacity.
However, in real life, the code is executed intermittently due
to hardware resource sharing and OS maintenance, leading
to a longer user-perceived latency. In computers, sharing of
CPU, memory, disk, and graphics resources increases the
user-perceived latency in different ways.

Scheduling latency: Scheduling latency is the delay be-
tween a process becoming runnable and actually running on
the CPU. During this interval, another process or the kernel
itself may be running instead.

Page fault latency: A page fault occurs when a process
requests data that belong to its address space, but are not
currently in memory due to its limited size. The OS is trig-
gered to fetch the page from the hard disk into the memory.
While handling a page fault, the OS may schedule another
process to run on the CPU until the requested data are avail-
able. The page fault latency is the amount of time between
a page fault occurring and the process resuming execution.

Disk latency: Since the data bandwidth of a hard disk
is much smaller than that of the memory, it forms the bot-
tleneck in handling page faults and could cause even more
delay when multiple processes access the hard disk simul-
taneously. The process issuing the disk I/O request blocks
until the requested data are available. The disk latency is
the interval between a process issuing a disk request and

resuming execution. Unlike CPU speed and memory ca-
pacity, which are governed by Moore’s Law, the seek and
access times of hard disks have improved at a much lower
pace [19]. Therefore, disk latency has become critical for
computer responsiveness.

X client scheduling latency: In X Window system based
computers, a single X server handles all graphics processing
requests. The CPU quantum for the X server process is used
to process requests from different processes (X clients). X
client scheduling is, therefore, critical for any X Window
system based computer to be visually responsive.

Normally, a computer should be able to handle a well-
implemented application responsively. However, resource
competition increases in two scenarios and introduces un-
responsiveness. The first is a loaded system on which an
application under user focus is running with some resource-
hungry applications (stressors) in the background. Fig. 1(a)
shows the cumulative distribution function (CDF) of the
user-perceived latency for TuxRacer with tar, the Linux
archiving utility, running in the background, on an IBM
Thinkpad R32 Linux/X based laptop with mobile Pentium
4-M processor (having two performance levels with dif-
ferent frequency/supply voltage settings: high (30.0W at
1.8GHz/1.3V) and low (20.8W at 1.2GHz/1.2V)). The dis-
tribution shifts towards longer latencies as the number of
stressors increases, indicating that the user-perceived la-
tency increases and the user may perceive time lags. In
the second scenario, power-saving DPM/DVS techniques
may aggravate resource competition. Fig. 1(b) shows the
changes in the user-perceived latency when the laptop uti-
lizes Intel SpeedStep technology [20] to change its perfor-
mance level from high to low for TuxRacer. As the pro-
cessor scales its frequency/supply voltage, the distribution
of the user-perceived latency shifts towards longer latencies.
As the computer becomes less responsive, user productivity
degradation may increase system energy consumption for
completing a task even with a smaller average power con-
sumption. The above scenarios demonstrate the importance
and necessity of guaranteeing responsiveness for comput-
ers, especially mobile computers, on which multiple appli-
cations may run simultaneously, and energy efficiency is
important.
3.2 The Inadequacy of Linux/X

Linux has been historically and organizationally sepa-
rated from the windowing system. Most Linux computers
come with XFree86 [21], an open-source implementation
of the X Window system. From the kernel’s perspective,
the X server is just a single process, although it may serve
multiple applications. There is no communication between
the X server and kernel regarding user behavior. Linux re-
lies on estimation to identify interactive applications. It
uses sleep time as the metric to estimate the interactivity
of applications. However, as mentioned earlier, this as-
sumption is not always valid. Many non-interactive appli-
cations sleep due to page faults and disk accesses, while
many modern interactive applications are CPU-intensive.
Table 1 summarizes interactivity estimation performed by
Linux for commonly-used applications. Linux mistakes
CPU-intensive interactive applications for non-interactive
ones and considers most disk-intensive applications as non-
interactive. Its estimation for gcc toggles between interac-
tive and non-interactive from time to time. Fig. 2 demon-
strates the limitations of the Linux interactivity estimator, in
which interactivity = 1 refers to an interactive application
and interactivity = 0 to a non-interactive one. The esti-



0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y

No stresor
1 stressor
2 stressors

(a) A loaded system

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y

1.2GHz
1.8GHz

(b) A power-managed system
Fig. 1. User-perceived latencies for TuxRacer

mator considers tar as an interactive application and gives
it a priority bonus (-5) to boost its performance. On the
other hand, TuxRacer, which is both interactive and CPU-
intensive, is regarded as non-interactive and receives a pri-
ority penalty (+5) when the race starts. Based on the inac-
curate estimation, Linux cannot provide adequate support
for alleviating user experience of unresponsiveness.

Table 1. Linux interactivity estimation
Application Interactivity Comments

Actual Linux

KEdit Yes Yes KDE text editor
Mozilla Yes Yes Web browser
Xpdf Yes Yes PDF viewer

GpsDrive Yes Yes Navigation system
TuxRacer Yes No Racing game

FFmpeg No Yes Audio/video format
converter

gcc No Yes/No GNU C/C++ compiler
MPlayer No Yes Media player

tar No Yes Linux archiving utility

Besides its inaccuracy in identifying interactive applica-
tions, Linux offers no memory and disk management sup-
port for them. Many interactive applications are busy only
sporadically, thus vulnerable to the page replacement algo-
rithm and the disk I/O scheduling algorithm used by Linux.
Fig. 3 shows the CDFs of page fault and disk latencies
for TuxRacer with a growing number (0 to 2) of stres-
sors (tar) running in the background. Both distributions
shift towards much longer latencies as the number of stres-
sors increases. This indicates that for better responsiveness,
memory and disk management strategies should favor the
application under user focus.

The smart scheduler [10] of the X server schedules X
clients at intervals of 20ms. The scheduler gives a client a
unit priority penalty if it is still running after one interval. It
gives the client a unit priority bonus if it has been idle for
one interval or it has received a keyboard or mouse event.
Since the client that receives keyboard or mouse events is
under user focus, the smart scheduler is indeed focus-aware.
However, it favors such clients conservatively. For example,

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

0 5000 10000 15000 20000 25000

Time (ms)

P
rio

rit
y 

ad
ju

st
m

en
t

0

1

2

In
te

ra
ct

iv
ity

Priority adjustment

Interactivity

(a) Tar

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

0 5000 10000 15000 20000 25000

Time (ms)

P
rio

rit
y 

ad
ju

st
m

en
t

0

1

2

In
te

ra
ct

iv
ity

Priority adjustment

Interactivity

(b) TuxRacer

Fig. 2. Inaccuracy of Linux interactivity estimation

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Page fault latency (ms)

P
ro

ba
bi

lit
y No stressor

1 stressor
2 stressors

(a) Page fault latency

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Disk latency (ms)

P
ro

ba
bi

lit
y No stressor

1 stressor
2 stressors

(b) Disk latency
Fig. 3. Executing TuxRacer with stressor tar

when multiple graphics-intensive clients are executed, the
client under user focus may suffer.
4 Focus-aware Resource Management

In this section, we first discuss how to track the processes
under user focus. We then detail how to favor them during
process, memory, disk I/O, and power management through
the OS and graphics management by the X Window system.
Finally, we present our implementation of focus-aware re-
source management on the Linux/X system.
4.1 Tracking of Processes Under Focus

The X server knows exactly which X client is currently
under user focus so that it can appropriately deliver key-
board and mouse events. However, it does not know the
process id (pid) for any X client. Similar to the technique
in [22], we utilize two pad fields in the data sent by an X
client to the X server when the former attempts to open
a connection with the latter. We modified the X11 library
slightly, so that one pad field is set to the X client’s pid and
the other is set to some specific number to ascertain that the
first pad field holds a valid pid. The second pad field is also
used to indicate whether the connection is remote or local.



The X server records the pid for each X client. We added
a global variable to the X server for the pid of the process
under user focus (called root-focus), which is initialized to
zero. When the X server sends a keyboard or mouse event
to an X client, it checks whether the X client’s pid is the
same as the root-focus. If it is not, the X server conveys the
pid of the new root-focus to the OS using a system call.

Since the modified X Window system can only identify
the processes under user focus if the corresponding appli-
cations are X-based, the root-focus process thus identified
sometimes is not the process that the user is indeed inter-
ested in, as illustrated in the following example.

Root window

Window

Konsoleroot-focus

Processes

kdeinit

kdeinit

bash

gcc

root-focus

leaf-focus

X Window system OS

Fig. 4. Tracking of the process under user focus
Example 1: As shown in Fig. 4, in a Konsole (KDE
GUI console emulator) session, the X server identifies the
Konsole as the root-focus process, while the user is actu-
ally interested in gcc compilation running in this session. In
terms of processes, gcc is a child process of bash (command
shell), which is in turn a child of Konsole. Each process
maintains information for its children in Linux. We mod-
ified the kernel so that upon receiving the pid of the root-
focus process, it marks this process Konsole and its de-
scendants, bash and gcc, as under user focus. Process gcc,
which the user is indeed interested in, is termed the leaf-
focus process. In such cases, the X server has a different
process under user focus than the OS. This is natural since
the X server manages the graphics processing resource and
the OS manages the CPU, memory, and disk resources.

4.2 Resource Management
Given the processes under user focus, the OS and X

server can allocate various resources in a focus-aware fash-
ion and perform power management in a user-friendly way.

4.2.1 Process management
We introduced a new field, focus flag, to the task de-

scriptor of each process, which indicates that the process is
currently under user focus. The focus flag of all the pro-
cesses not under user focus is 0. For each process under
user focus, the focus flag is positive, either 1 or 2. The
focus flag of the leaf-focus process, which the user is ac-
tually interested in, is 1, while the focus flag of all the
other processes under user focus is 2. Let us revisit Exam-
ple 1. The focus flag of the leaf-focus process gcc, which
is under user attention, is set to 1. The focus flag of other
processes under user focus, Konsole and bash, is set to 2.

The scheduler determines which process should run
when and for how long. Priority scheduling is often em-
ployed in many general-purpose OSs. Each process is given
a priority and the runnable process with the highest priority
is selected to run. Assigning a higher priority to the pro-
cesses under user focus in order to reduce the user-perceived
latency is straightforward, since it decreases the scheduling
latency for these processes directly. In this work, instead
of changing the scheduling policy of the Linux scheduler,
we utilize its quantum and priority assignment mechanisms.

The priorities of the processes under user focus are boosted,
since each such process is involved in the current user-
computer interaction. Once the user switches focus, the
kernel resets the priorities of all the previous processes un-
der user focus, and clears their corresponding focus flag.
Then the kernel marks the focus flag of current processes
under user focus and gives a bonus (-15) to their priorities.
The kernel checks whether there is any runnable process un-
der user focus, whose priority is higher than the priority of
the currently-running process. If there is, the execution of
the currently-running process is suspended and the sched-
uler is invoked to select another process to run (usually the
runnable process under user focus).

The X server, which is treated as a single process in the
OS, interacts with multiple processes. To avoid resource
competition among the X server and other processes that
are not under user focus, the OS assigns a higher priority
to the X server once it starts. In this way, the X server can
preempt the processes not under user focus whenever user
input or request for graphics processing arrives.
4.2.2 Memory management

Even if the processes under user focus are assigned a
higher priority than other processes, its execution may be
delayed due to memory competition. In [11], a certain
amount of physical memory is reserved for interactive ap-
plications when the available memory is tight. This en-
sures that the memory is available to interactive applica-
tions during startup. However, pages in the address space
of the processes under user focus are still vulnerable to the
page replacement algorithm, which determines which pages
to keep in memory and which pages to swap out when
free memory becomes scarce. Most page-replacement al-
gorithms, such as clock paging, not recently used (NRU)
paging, and least recently used (LRU) paging, are unaware
of current user focus. When some process not under user
focus causes a page fault and there is no page frame avail-
able, the page replacement algorithm may choose the page
owned by the process under user focus as a victim. When
the process under user focus addresses data in the victim
page, a page fault occurs and the OS traps, suspending this
process, which increases the user-perceived latency.

In this work, we slightly changed the LRU-based page
replacement algorithm in Linux. Linux maintains two lists,
active list, for pages that were recently accessed, and inac-
tive list, for pages that have not been accessed for a long
time. Pages in the active list are exempt from reclaiming.
The age of a page describes how desirable it is to keep this
page frame in the active list. When the kernel scans through
the active list for pages to move to the inactive list, the
age of a page increases (decreases) whenever the page was
(not) referenced. The page becomes a candidate for being
moved to the inactive list when its age reaches zero. We
maximize the age of the pages in the code segment of the
leaf-focus process. The possibility of being swapped out for
such pages is decreased. The number of page faults caused
by the leaf-focus process is thus reduced.
4.2.3 Disk I/O scheduling

Accessing the hard disk is time-consuming, since the
hard disk controller must move the head to the exact posi-
tion where the data are recorded. Current disk I/O schedul-
ing algorithms, such as elevator, deadline, and anticipatory
scheduling [23], aim at reducing the amount of time the disk
spends seeking, thus increasing I/O throughput. However,
the requests from the processes under user focus may suffer,
aggravating computer unresponsiveness, as illustrated next.



Example 2: Consider a disk with 200 cylinders (0-199). A
request comes in to read a block on cylinder 51. While the
seek to cylinder 51 is in progress, new requests come in to
read blocks on cylinders 89, 185, 45, 127, 56, 123, 68, 72,
23, in that order. Requests for cylinders 185, 45, 56, and 123
are from the leaf-focus process. When the current request
for cylinder 51 is taken care of, the disk I/O scheduling al-
gorithm decides which request to handle next. Consider one
of the disk I/O scheduling algorithms in Linux, the LOOK
variation of the elevator algorithm [24]. It keeps moving in
one direction until there are no more requests in that direc-
tion and then switches to the opposite direction. Fig. 5(a)
shows the disk head movement for the LOOK strategy in
Linux, assuming it was initially moving down. This order
yields a total head movement of 190 cylinders. However,
the request for cylinder 185 from the leaf-focus process is
postponed to the end in the order, waiting until the head has
moved 190 cylinders. The delay increases the disk latency,
which may make the user perceive the time lags.
Table 2. No. of head movements for the disk I/O re-
quests from the leaf-focus process

Requested cylinder Original LOOK Focus-aware LOOK

185 190 146
45 6 6
56 61 17

123 128 84

51

23

68
72

89

127
123

56

45

185

0 25 50 75 100 125 150 175 200

T
im

e

(a) Original LOOK

51

127
89

72
68

23

45
56

123
185

0 25 50 75 100 125 150 175 200

T
im

e

(b) Focus-aware LOOK
Fig. 5. Different strategies for scheduling disk I/O re-
quests

In Linux, a request queue is maintained for the pend-
ing I/O operations for the disk. Requests are arranged in
the request queue according to their location on the disk.
The request at the head of the request queue is closest to
the disk head, which reduces the seek time. The disk I/O
scheduling algorithm attempts to merge requests to adja-
cent locations on the disk by combining two requests. If
a request cannot be merged, the algorithm attempts to in-
sert it in the request queue in the position that maintains the
request queue’s least seek time. In this work, we slightly
modified the Linux LOOK disk I/O scheduling algorithm
to make it focus-aware. We added a field focus to the re-
quest descriptor of each request. If a request is from the
leaf-focus, its focus is set to 1. Otherwise, it is set to 0. Al-
gorithm 1 gives the pseudo-code of the focus-aware LOOK
algorithm. The requests with focus = 1 are always located
ahead of others with focus = 0 in the request queue. When
a new request arrives, the algorithm scans old requests from
the tail of the request queue. If the new request is from the
leaf-focus process, the algorithm skips the old requests with
focus = 0. When the algorithm reaches an old request with
focus = 1, it behaves in the same way as Linux LOOK af-

terwards. If the new request is not from the leaf-focus pro-
cess, the algorithm also behaves in the same way as Linux
LOOK. The focus-aware LOOK algorithm ensures that the
requests from the leaf-focus process are always taken care
of first. Fig. 5(b) shows the disk head movements for Exam-
ple 2 using the focus-aware LOOK algorithm. Table 2 com-
pares the number of head movements for the requests from
the leaf-focus process using the above two algorithms. The
average reduction of head movement for the focus-aware
LOOK algorithm is 32.4% with respect to the Linux LOOK
algorithm. However, the total number of head movements is
increased from 190 to 308, indicating the overhead for the
background processes.

Our strategy is also applicable to other disk I/O schedul-
ing algorithms for improving computer responsiveness.
Consider the deadline [25] and anticipatory [26] disk I/O
scheduling algorithms in Linux. The former is a cyclic ele-
vator with a deadline. It assigns a deadline to each request,
500ms to a read request and 1s to a write request. The latter
is a cyclic elevator with a waiting policy. It waits for 6ms
after completing a read request from a process, given that
the process may issue an additional read request that does
not require a seek operation. Both algorithms can be made
focus-aware by modifying the cyclic elevator using the ap-
proach discussed above. Moreover, for the deadline disk
I/O scheduling algorithm, assigning a shorter deadline, say,
the human perceptual threshold (in the 50-100ms range), to
the requests from the leaf-focus process can be effective in
reducing disk latency for this process and thus improving
computer responsiveness.

Algorithm 1 Focus-aware LOOK algorithm
1: Fetch next request req;
2: Request r ←{request queue tail};
3: while r! ={request queue head} do
4: if req.focus = 1 then
5: if r.focus = 0 then
6: continue;
7: else
8: use the Linux LOOK strategy;
9: end if

10: else
11: use the Linux LOOK strategy;
12: end if
13: end while
14: if r.focus = 1 && r cannot be merged or inserted then
15: insert r right before the first request with focus = 0 in the request

queue;
16: end if

4.2.4 X client scheduling
The X server is in charge of providing window system

services to many applications simultaneously. It distributes
its limited resources among these applications using the X
client scheduling algorithm. The X client under user focus
may suffer when it competes for resources with multiple
graphics-intensive clients. In this work, we modified the
X server to give the X client under user focus the highest
priority temporarily. Once the root-focus X client becomes
ready, the X server processes its requests immediately. To
make the focus switch smooth, the X server still maintains
the smart scheduling priority [10] for each client, including
root-focus. Upon user focus switch, the X server recov-
ers the smart scheduling priority of the previous root-focus
client. Giving the highest priority to the root-focus client
may delay graphics processing requests from other clients
that are not under user focus. However, since the user only



focuses on one application at any instant, the delay in the
applications not under user focus may not be noticed.
4.2.5 Latency-driven DVS

Based on the work in [16], we utilize user-perceived la-
tency to drive DVS. With the knowledge of the process un-
der user focus, the DVS policy can trade off performance for
power consumption judiciously, taking the quality of user
experience into account. The X server computes an expo-
nentially moving average of past user-perceived latencies
given by Equation (1):

Pi =
wPi−1 + Mi−1

w + 1
(1)

where w is a decay factor. Pi and Mi denote the predicted
and measured user-perceived latency for the ith user input,
respectively. If the predicted user-perceived latency for the
next user input is larger than the maximum value of the
human-perceptual threshold Kmax, which means that the
system responsiveness is unacceptable, the X server noti-
fies the OS to increase the frequency/supply voltage level.
On the other hand, if the predicted value is below the min-
imum value of the human-perceptual threshold Kmin, the
user may not perceive time lags, and hence the system can
remain running at a lower performance level, thereby re-
ducing power consumption. If the predicted value is be-
tween Kmax and Kmin, the OS does not change the current
performance level to avoid unnecessary frequency/supply
voltage transition overhead. The value of the decay fac-
tor w impacts the number of frequency/supply voltage tran-
sitions. Smaller values imply the OS may adjust the fre-
quency/supply voltage very frequently. The transition time
overhead increases the user-perceived latency, which makes
the user feel that the computer is unresponsive. The transi-
tion energy overhead increases the total energy consump-
tion. Larger values imply the number of transitions is de-
creased. However, the system may continuously run at the
higher performance level before the OS is notified to de-
crease the frequency/supply voltage to reduce the power
consumption. Thus, we choose w = 3 in this work. We
use Kmin = 50ms and Kmax = 100ms to drive DVS. Note
that both values are tunable in our implementation.
4.3 Implementation Issues

After having presented the design and implementation of
the focus-aware resource management technique for each
resource, we now present its overall architecture and ad-
dress the new system calls required by the implementation.

OS Process 
management

Memory 
management

Latency-
driven DVS

SetFocusProcess() SetCpuSpeed()

Focus pid

Latency 
recordX server Focus-aware X 

client scheduling

SetXserverPid()

Focus tracking

Process 
priority

Page 
age

Loadable module

CPUFreqDisk 
management

Request 

Fig. 6. Architecture for focus-aware resource manage-
ment

Fig. 6 shows the overall architecture for our user focus-
aware resource management technique. Each resource man-
agement block was described in Section 4.2. Focus-aware
OS resource management, including all the new system
calls, is implemented as a kernel loadable module available
at [5]. The user can load or unload it easily without reboot-
ing the system.

We introduced three new system calls to implement the
communication between the X server and Linux kernel, as
shown in Fig. 6. System call SetXserverPid notifies the
pid of the X server to the kernel as soon as the X server
is started. Then the kernel gives a bonus (-15) to its priority
to boost its performance. The time overhead of SetXserver-
Pid is 0.63µs on an average. System call SetFocusProcess
first resets priorities of all the previous processes under user
focus. Then it tracks the process hierarchy using a field,
p cptr, in the task descriptor of the process, to find the pro-
cesses currently under user focus and set their correspond-
ing focus flag. It boosts the priorities of all the current
processes under user focus and maximizes the page ages
of the code segment of the current leaf-focus process. The
time overhead of SetFocusProcess is 1.55µs. System call
SetCpuSpeed adjusts the frequency/supply voltage dynam-
ically, based on the information on the user-perceived la-
tency. Initially, the system works at a lower performance
level to reduce power consumption. When the average la-
tency is above Kmin = 100ms and the current performance
level is low, the X server notifies the kernel to increase
the frequency/supply voltage. When the average is lower
than Kmin = 50ms and the current performance level is
high, the X server notifies the kernel to decrease the fre-
quency/supply voltage. SetCpuSpeed calls the functions
provided by CPUFreq [27] to dynamically adjust the CPU
frequency/supply voltage. The time overhead of SetCpuS-
peed is 251.95µs.
5 Evaluation

We chose an IBM Thinkpad R32 laptop described in
Section 3.1 for our experiments. The OS is RedHat Linux
9.0 with the 2.4.20 kernel (with the new O(1) scheduler [6]),
with XFree86 4.3 and KDE desktop environment. The ker-
nel is patched with 2.4.20-ac2, which enables CPU fre-
quency/voltage scaling.

We use two metrics for evaluation: user-perceived la-
tency and overhead. These are described next.

User-perceived latency: A user input is typically han-
dled in a Linux/X computer using the following steps, as
shown in Fig. 7.

1. An interrupt is generated as soon as the user presses a key or
mouse button.

2. The interrupt handler in the keyboard device driver notifies
the X server about the interrupt.

3. The X server reacts to the interrupt by generating an X event
and sending it to the corresponding X client.

4. The X client processes the X event and sends a request for
graphics processing to the X server.

5. The X server generates and sends updated display data to the
monitor device driver.

6. The X server sends a reply to the X client and the latter re-
turns to the event-loop to fetch new events.

We performed measurements as follows. For keyboard
and mouse events, the X server records the time, relative to
the X server start time, when an event is generated (birth
time). We modified the X server slightly so that the birth
time is recorded relative to the start of the day instead. The
X11 library is used as the application programming inter-
face (API) for X-based graphical user interface (GUI) ap-
plications. Most applications call XNextEvent() directly
or indirectly, when a GUI toolkit is used, for fetching the
new X events sent by the X server. If there is no new event,
XNextEvent() blocks. Its restart marks the end of pro-
cessing for the previous event and the return to event-loop.
We added bookkeeping code to XNextEvent() so that



 

5. Generate output 

1. Generate interrupt 

Hardware 

6. Reply 

2. Interrupt handling 

4. Request 

3. X event 

Keyboard 

 
X Server

Display 

Keyboard 
device driver 

Display  
device driver 

X Window system 

X client 

Xlib 

OS 

Fig. 7. User-perceived latency measurement via the X
Window System
it records the difference between an X event’s birth time
and the time when the application reaches XNextEvent()
again. The difference is the user-perceived latency used in
this work. It consists of steps (3)-(6). Based on our ex-
perience, the contribution of steps (1) and (2) is negligible
compared to that of steps (3)-(6). The user-perceived laten-
cies, and their average and distributions are used to evaluate
computer responsiveness.

Overhead: Favoring the process under user focus may
negatively impact the processes not under user focus when
resource competition is tight. The completion time is used
to evaluate compute-intensive applications, measured by the
time command provided by Linux. The scheduling la-
tency is used to evaluate the impact on real-time applica-
tions. For a specific process, we record the time that it
becomes runnable (when it calls enqueue task()). After
each scheduling decision, the scheduler checks the process
id, pid, being selected to run. If it is the target process, its
corresponding scheduling latency is calculated.
6 Experimental Results

We first present experimental results for real-world ap-
plications using artificial stressors to illustrate the effec-
tiveness of focus-aware resource management in terms of
computer responsiveness and energy efficiency. Next, we
discuss how swiftly the user can switch focus using the
focus-aware resource management technique. Finally, we
discuss the overhead for the background applications. We
use the term focus-aware system to refer to the Linux/X
system augmented with focus-aware resource management,
and Linux to refer to the conventional Linux/X system.

Real applications typically demand more than one hard-
ware resource, resulting in very intricate resource competi-
tion. Therefore, to evaluate our focus-aware resource man-
agement technique for CPU, memory, and disk resource al-
location, respectively, we wrote three artificial stressors to
consume the CPU, memory, and disk, respectively. The
CPU stressor runs a busy loop of double multiplication,
consuming 99.8% of the CPU cycles on an average if run-
ning alone, as reported by top. Its memory consumption is
negligible. The memory stressor allocates 50MB of mem-
ory and then runs a busy loop to set the whole allocated
memory to a specific value using memset(). The disk stres-
sor opens a synchronous file and repeatedly writes 10MB of
data into it.
6.1 Computer Responsiveness and Energy Effi-

ciency
We consider an interactive application, TuxRacer, as

being under user focus. Figs. 8(a)-(d) show the CDFs of
user-perceived latency for TuxRacer without a stressor,
and under CPU, memory, and disk stressors, respectively.

In each case, the CDF for the focus-aware system shifts to-
wards shorter latencies, indicating an improvement in re-
sponsiveness. The trend towards shorter latencies in the
distributions for the focus-aware system is even more dra-
matic under different stressors than without any stressor. In
each case, Table 3 shows the reduction in user-perceived
latency for TuxRacer in the focus-aware system with re-
spect to Linux running at 1.8GHz and 1.2GHz, respectively.
It is obvious that focus-aware resource management im-
proves responsiveness for interactive applications signifi-
cantly during resource competition. The focus-aware sys-
tem employed DVS so that the performance level could be
lowered during the experiment. This implies an additional
power advantage of the focus-aware system. We address
this issue in detail later.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y Linux-1.2GHz

Linux-1.8GHz

Focus-aware

(a) No stressor

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y Linux-1.2GHz

Linux-1.8GHz

Focus-aware

(b) CPU stressor

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y Linux-1.2GHz

Linux-1.8GHz

Focus-aware

(c) Memory stressor

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y Linux-1.2GHz

Linux-1.8GHz

Focus-aware

(d) Disk stressor
Fig. 8. TuxRacer under artificial stressors

Next, we used tar (a batch application), MPlayer (a
real-time application), and GpsDrive (an interactive appli-
cation) as stressors. tar is used to decompress the Linux



Table 3. User-perceived latency reduction for TuxRacer
under artificial stressors.

Stressor None CPU Memory Disk
(%) (%) (%) (%)

Linux-1.8GHz vs. Focus-aware 5.3 59.9 51.5 45.9
Linux-1.2GHz vs. Focus-aware 22.5 62.2 60.4 55.1

kernel source code. MPlayer is used to play MP3 mu-
sic. Fig. 9 shows the CDFs of the user-perceived latency for
TuxRacer in the tar-loaded and GpsDrive-loaded sys-
tems. Both distributions of the user-perceived latency in
the focus-aware system shift towards shorter latencies com-
pared to the Linux system running at 1.8GHz and 1.2GHz.
In the tar-loaded focus-aware system, 47% of the user-
perceived latency is above Kmax = 100ms, as opposed to
61% in Linux running at 1.8GHz and 65% in Linux run-
ning at 1.2GHz. We obtain similar results in the GpsDrive-
loaded focus-aware system. In this case, the user-perceived
latency above Kmax = 100ms in the focus-aware system
is reduced by 42.0% with respect to Linux. The above two
cases indicate that focus-aware resource management pro-
vides better system responsiveness compared to the Linux
system. The X server performs DVS according to the user-
perceived latency. It notifies the OS to change the processor
performance level dynamically. We recorded the proces-
sor performance level after each user input was received.
Fig. 10 shows these recorded traces for the experiments de-
picted in Fig. 9. We assume, in general, that each user input
takes similar time and the processor is always busy, which is
mostly true for TuxRacer. In the tar-loaded focus-aware
system, for 21% of all user inputs, the processor was at the
lower performance level. The average power consumption
for focus-aware resource management can be estimated to
be 28.1W. It yields an energy reduction of 6.3% compared
to Linux. Similarly, we can estimate the energy reduction
for the GpsDrive-loaded focus-aware system to be about
7.5% with respect to Linux. It is obvious that the focus-
aware system can ensure better responsiveness even with
less energy consumption.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y Linux-1.2GHz

Linux-1.8GHz

Focus-aware

(a) tar as stressor

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

User-perceived latency (ms)

P
ro

ba
bi

lit
y Linux-1.2GHz

Linux-1.8GHz

Focus-aware

(b) GpsDrive as stressor
Fig. 9. TuxRacer under different stressors

6.2 User Focus Switch
One of the user concerns is how swiftly the focus can be

switched. Fig. 11 shows the traces of user-perceived laten-

0

1

0 50 100 150 200

User input

P
er

fo
rm

an
ce

 
le

ve
l

Low

High

(a) tar as stressor

0

1

0 50 100 150 200 250 300 350

User input

P
er

fo
rm

an
ce

 
le

ve
l

Low

High

(b) GpsDrive as stressor
Fig. 10. Performance-setting decisions for TuxRacer

cies for KEdit and TuxRacer for switching focus in both
Linux and focus-aware systems. For KEdit in Fig. 11(a),
there are five focus switches from another KEdit. Immedi-
ately after a focus switch, user perceived-latencies increase
in both systems. The average user-perceived latency after
a focus switch is reduced from 12.4ms in Linux running at
1.8GHz to 5.9ms in the focus-aware system.

0

4

8

12

16

20

0 5 10 15 20 25 30 35 40
User input

U
se

r-
pe

rc
ei

ve
d 

la
te

nc
y

 (
m

s)

Linux-1.8GHz
Focus-aware

(a) KEdit

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100
User input

U
se

r-
pe

rc
ei

ve
d 

la
te

nc
y 

(m
s)

Linux-1.8GHz

Focus-aware

(b) TuxRacer

Fig. 11. Effect of focus switch
In Fig. 11(b), the focus is switched from GpsDrive to

TuxRacer. The user-perceived latency for TuxRacer af-
ter a focus switch is reduced from 147ms in Linux running
at 1.8GHz to 104ms in the focus-aware system. The peri-
odic behavior of the traces is due to GpsDrive running in
the background. It updates the map periodically, making
TuxRacer suffer. The focus-aware system performs better
than Linux after the focus is switched.
6.3 Overhead

After observing the advantages of focus-aware resource
management, we consider its impact on background appli-
cations. Table 4 shows the completion time of tar running
in the background. It also shows the completion time for
FFmpeg and the user-perceived latency for KEdit and
TuxRacer. Note that when FFmpeg finishes before tar,
it restarts. The completion time is just that for the first run.
The completion time of tar in the focus-aware system is
longer than that in Linux when FFmpeg or TuxRacer,
which are compute-intensive, are under user focus. When
KEdit is under user focus, the overhead is small because
there is a lot of idle time during its usage so that tar can
still run very frequently. Although when the application un-
der user focus is compute-intensive, the focus-aware sys-
tem is not that sympathetic to the applications running in



the background, the system caters to user attention with all
its resources, as is obvious from the reduction in the user-
perceived latency/completion time (Table 4) for the applica-
tions under user focus. Moreover, by bringing an idle win-
dow under user focus, a user can make all background appli-
cations run in almost the same way as they do under Linux.
We also experimented with the case when the user plays
MP3 music in the background. Table 5 shows the schedul-
ing latency of MPlayer, playing music in the background.
The value of scheduling latency is still in the acceptable
range in the focus-aware system.

Table 4. Overhead of focus-aware resource management
Avg. user-perceived latency/completion time

User focus Focus Stressor (tar)
application Linux Focus- Linux Focus-

(1.8GHz) aware (1.8GHz) aware

FFmpeg 36.1s 32.3s 116.6s 337.9s
KEdit 3.7ms 2.9ms 62.0s 63.0s

TuxRacer 141.5ms 118.9ms 59.2s 140.4s

Table 5. Scheduling latency of MPlayer
User focus Scheduling latency (ms) of MPlayer
application Linux Focus-aware

FFmpeg 1.2 2.7
KEdit 0.6 1.3

7 Discussions and Conclusions
The focus-aware resource management has a totally dif-

ferent design philosophy from Linux. The former values
the user more than the computer while the latter inherits the
opposite trait from its ancestors. However, our implementa-
tion on the Linux/X system requires only minimal changes
and is fully based on existing process, memory, and disk I/O
mechanisms in Linux. When there is no GUI application or
the process under focus is idle, the focus-aware system be-
haves exactly in the same way as the Linux/X system.

In this work, we showed how computer responsive-
ness can be improved in the Linux/X system. By ana-
lyzing the characteristics of resource usage for interactive
applications, we first discussed the factors that contribute
to computer unresponsiveness, e.g., resource competition
for CPU, memory, disk, and graphics processing. We es-
tablished the inadequacy of Linux in tackling computer
unresponsiveness on loaded and power-managed systems.
Based on the information on user focus, which indicates
the interests and wishes of the users directly, we proposed
and implemented a user focus-aware resource management
technique based on the Linux/X system. According to the
user focus information obtained from the X Window sys-
tem, various resources are allocated to multiple applications
by the X Window system and OS in a focus-aware fashion.
By favoring the application currently under focus in differ-
ent ways, we achieved a significant improvement in com-
puter responsiveness, which in turn provided opportunities
for reducing system power consumption through DVS with-
out hurting user experience or productivity. The DVS policy
was directly driven by the user-perceived latency. Experi-
ments demonstrated that the focus-aware system can reduce
the average user-perceived latency significantly on an IBM
Thinkpad R32 laptop, with some reduction in energy con-
sumption.

References
[1] T. W. Butler, “Computer response time and user perfor-

mance,” in Proc. Conf. Human Factors in Computing Sys-
tems, Dec. 1983, pp. 58–62.

[2] B. Shneiderman, “Response time and display rate in human
performance with computers,” ACM Comput. Surv., vol. 16,
no. 3, pp. 265–285, Sept. 1984.

[3] D. P. Siewiorek, “New frontiers of application design,” Com-
mun. ACM, vol. 45, no. 12, pp. 79–82, Dec. 2002.

[4] Software bloat, http://wombat.doc.ic.ac.uk/foldoc/foldoc.
cgi?bloat.

[5] Focus-aware resource management kernel module, http://
www.princeton.edu/∼lyan/project.htm.

[6] I. Molnar, “Goals, design and implementation of the new
ultra-scalable O(1) scheduler,” Jan. 2002, http://kernel.
kernelnotes.de/linux-2.6.2/Documentation/sched-design.txt.

[7] Y. Etsion, D. Tsafrir, and D. Feitelson, “Human-centered
scheduling of interactive and multimedia applications on a
loaded desktop,” Tech. Rep., Hebrew University, Mar. 2003.

[8] TuxRacer, http://www.tuxracer.com.
[9] X Window system, http://www.x.org.

[10] K. Packard, “Efficiently scheduling X clients,” in Proc.
Usenix Technical Conf., June 2000, pp. 175–186.

[11] S. Evans, K. Clarke, D. Singleton, and B. Smaalders, “Op-
timizing Unix resource scheduling for user interaction,” in
Proc. USENIX Summer Tech. Conf., June 1993, pp. 205–218.

[12] T. Pering, T. Burd, and R. Brodersen, “The simulation and
evaluation of dynamic voltage scaling algorithms,” in Proc.
Int. Symp. Low Power Electronics & Design, Aug. 1998, pp.
76–81.

[13] K. Flautner, S. Reinhardt, and T. Mudge, “Automatic per-
formance setting for dynamic voltage scaling,” in Proc. Int.
Conf. Mobile Computing & Networking, July 2001, pp. 260–
271.

[14] J. R. Lorch and A. J. Smith, “Improving dynamic voltage
scaling algorithms with PACE,” in Proc. ACM Int. Conf.
Measurement & Modeling of Computer Systems, June 2001,
pp. 50–61.

[15] L. Zhong and N. K. Jha, “Dynamic power optimization of
interactive systems,” in Proc. Int. Conf. VLSI Design, Jan.
2004, pp. 1041–1047.

[16] L. Yan, L. Zhong, and N. K. Jha, “User-perceived latency
driven voltage scaling for interactive applications,” in Proc.
Design Automation Conf., June 2005, pp. 624–627.

[17] B. Shneiderman, Designing the User Interface: Strategies
for Effective Human-Computer Interaction, 3rd ed. Read-
ing, Mass: Addison Wesley Longman, 1998.

[18] S. K. Card, T. P. Moran, and A. Newell, The Psychology of
Human-computer Interaction. Lawrence Erlbaum Asso-
ciate, 1983.

[19] E. Grochowski and R. Halem, “Technological impact of
magnetic hard disk drives on storage systems,” IBM Systems
Journal, vol. 42, no. 2, pp. 338–346, 2003.

[20] Intel SpeedStep Technology, http://www.intel.com.
[21] XFree86, http://www.xfree86.org.
[22] Y. Endo and M. Seltzer, “Improving interactive performance

using TIPME,” in Proc. ACM Int. Conf. Measurement &
Modeling of Computer Systems, June 2000, pp. 240–251.

[23] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O,” in Proc. Symp. Operating Systems Prin-
ciples, Oct. 2001, pp. 117–130.

[24] Linux kernel source code, version 2.4.20, http://lxr.linux.no/
source/drivers/block/elevator.c.

[25] Linux kernel source code, version 2.6.0, http://lxr.linux.no/
source/drivers/block/deadline-iosched.c?v=2.6.0.

[26] Linux kernel source code, version 2.6.0, http://lxr.linux.no/
source/drivers/block/as-iosched.c?v=2.6.0.

[27] CPUFreq, http://www.brodo.de/cpufreq/.


