
Synthesis and Optimization of Threshold Logic Networks
with Application to Nanotechnologies

Rui Zhang, Pallav Gupta, Lin Zhong, and Niraj K. Jha
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

{rzhang|pgupta|lzhong|jha}@ee.princeton.edu

Abstract— We propose an algorithm for efficient threshold network
synthesis of arbitrary multi-output Boolean functions. The main purpose
of this work is to bridge the wide gap that currently exists between
research on the development of nanoscale devices and research on the
development of synthesis methodologies to generate optimized networks
utilizing these devices. Many nanotechnologies, such as resonant tunnel-
ing diodes (RTD) and quantum cellular automata (QCA), are capable
of implementing threshold logic. While functionally correct threshold
gates have been successfully demonstrated, there exists no methodology
or design automation tool for general multi-level threshold network
synthesis. We have built the first such tool, ThrEshold Logic Synthesizer
(TELS), on top of an existing Boolean logic synthesis tool. Experiments
with about 60 multi-output benchmarks were performed, though the
results of only 10 of them are reported in this paper because of space
restrictions. They indicate that up to 77% reduction in gate count
is possible when utilizing threshold logic, with an average reduction
being 52%, compared to traditional logic synthesis. Furthermore, the
synthesized networks are well-balanced, and hence delay-optimized.

I. I NTRODUCTION

The Semiconductor Industries Association (SIA) roadmap [1]
predicts that complementary metal-oxide semiconductor (CMOS)
chips will continue to fuel the need for high-performance systems
for another 10–15 years. However, advancements in the material sci-
ence and device community have enabled the creation of nanoscale
devices (RTDs, QCA, to name a few) that have novel structures and
properties. While CMOS is used to implement Boolean logic, many
nanoscale devices implement threshold logic.

As progress is made in the material and physical understanding
of nanoscale devices, research must be done at the logic level to
fully harness the potential offered by these devices. Today, nanotech-
nologies are in their infancy and the development of computer-aided
design methodologies for these nanotechnologies is crucial if any of
them is to replace or augment CMOS. Among existing nanoscale
devices [2], RTDs and QCA are two promising nanotechnologies
that are of particular interest to us because they implement threshold
logic.

In this paper, we present the first comprehensive methodology
for multi-level threshold logic synthesis and optimization. Once a
threshold network has been synthesized, it can be mapped onto a
specific target nanotechnology. The algorithm in our methodology
takes into account defect tolerances in the input weights, and the
fanin restriction on a threshold gate. Taking these parameters into
account improves the robustness of the synthesized network. Node
sharing (i.e., a fanout node) is also preserved and thus, any advantage
that is gained by preprocessing the network through a Boolean logic
synthesis tool remains. The synthesized network is area and delay
optimized. The novel contributions of this paper are as follows:

• This is the firstcomprehensivemethodology for multi-level
multi-output threshold network synthesis.

• Based on our methodology, we have built a threshold network
synthesis tool on top of an existing Boolean logic synthesis
tool.

• We formulate new theorems that describe properties of thresh-
old logic and use them to our advantage in our methodology.

The remainder of this paper is organized as follows. Sec-
tion II presents background material and previous work. Section III
presents an example to motivate the need for our threshold network
synthesis methodology. Section IV presents some theorems and their

Acknowledgments: This work was supported in part by NSF under grant
No. CCR-0303789.

CLK

Τ

Load
RTD

Driver
RTD

Negative
weight
 inputs

Positive
weight
inputs

wa wb

-wc

a b

c

f

(a) (b)

T
wa

-wc

wb

a

c

b f

Fig. 1. A monostable-bistable logic element and its equivalent LTG.

proofs on the properties of threshold logic. Section V describes our
synthesis methodology and its implementation in a tool in detail.
We present our experimental results in Section VI and conclude the
paper in Section VII.

II. BACKGROUND AND PREVIOUS WORK

In this section, we describe some preliminary concepts. Specifi-
cally, we describe what a threshold function is and its relationship
to unateness. We also review algebraically-factored and Boolean-
factored expressions, and linear programming. Previous work on
threshold network synthesis is also presented.
A. Threshold Logic

A linear threshold functionf is a multi-input function in which
each input,xi ∈ {0, 1}, i ∈ {1, 2, . . . , l}, is assigned a weightwi

such thatf assumes the value 1 when the weighted sum of its inputs
equals or exceeds the value of the function’s threshold,T [3]. That
is,

f(x1, x2, . . . , xn) =

{
1 if

∑l
i=1 wixi ≥ T + δon

0 if
∑l

i=1 wixi < T − δoff ,
(1)

Parametersδon and δoff represent defect tolerances that must be
considered since variations (due to manufacturing defects, tempera-
ture changes, etc.) in the weights can lead to network malfunction.
In this paper, we assumeδon is zero andδoff is one. In many past
works, δon and δoff are both assumed to be zero, thus providing
no defect tolerance.

A linear threshold gate (LTG) is a multi-terminal device that
implements a threshold function. An LTG can be considered a
generalization of a conventional logic gate. Anl-input NAND and
an l-input NOR gate can both be realized by a single LTG. Because
both gates are functionally complete, any Boolean logic function
can be realized by LTGs. However, not all functions can be realized
by a single LTG. A function that can be realized by a single LTG is
called athreshold function. A network of threshold gates is called
a threshold network.

An LTG based on RTDs and heterostructure field-effect transistors
(HFET) is shown in Fig. 1(a). It outputs a logic 1 whenawa +
bwb − cwc ≥ T , else a logic 0. It is called a monostable-bistable
logic element [4] and its equivalent LTG is shown in Fig. 1(b).

B. Unateness
A logic function, f(x1, x2, . . . , xl), is said to be positive (neg-

ative) in variablexi if there exists a disjunctive or conjunctive

expression off in which xi appears in uncomplemented (comple-
mented) form only. Iff is either positive or negative inxi, it is
said to beunate in xi. Otherwise, it isbinate in xi. Unateness is
an important property for threshold logic because every threshold
function is unate [5] (the converse is not true, however).

C. Algebraically-factored and Boolean-factored Networks

A sum-of-products (SOP) expression,f =
m∑

i=1

Ci, is algebraic if

no cube,Ci, is contained within another cube. That is,∀i, j, i 6=
j, Ci * Cj . An expression that is not algebraic isBoolean [6].
A factored formF is said to be algebraically-factored if the SOP
expression obtained by multiplyingF out directly, without using
the identitiesxx̄ = 0 andxx = x, and single-cube containment, is
algebraic [6]. Otherwise,F is Boolean-factored.

D. Linear Programming
In linear programming, we have ap× q matrix A, a p× 1 vector

B, and a1× q vectorC. We want to find a vectorX of q elements
such that the objective functionCX is minimized subject to thep
constraints given byAX ≤ B. Integer linear programming (ILP)
[3] is a special case of linear programming that requires all of the
elements inX to assume integer values.

E. Previous Work
Research in threshold logic synthesis was done mostly in the

1950s and 1960s. In [7], [8], approximation methods are used to
determine the input weights and threshold of a threshold function.
In [5], admissible patterns on a Karnaugh map are used to determine
whether a function is threshold or not. Unfortunately, because of
their computational complexity, these methods are restricted to 10
or fewer variables. Linear programming and tabulation methods
have been used in [3] to determine if a function is threshold or
not. A CMOS implementation of threshold gates can be found in
[9]. A survey of VLSI implementations of threshold logic can be
found in [10]. In [11], a branch-and-bound algorithm is used to syn-
thesize two-level threshold networks. Multi-level threshold network
synthesis did not receive much attention in the 1950s and 1960s
because efficient algorithms to factorize a multi-level network were
unknown at that time. Most methods performed one-to-one mapping
by replacing each Boolean gate in the network with a threshold gate.
However, various algorithms exist today to compute the kernels and
co-kernels of a network which can be used to perform algebraic
or Boolean factorization [6]. In addition, methods have also been
developed for Boolean network simplification. Finally, tools such as
SIS [12] are available for network factorization and optimization.

III. M OTIVATIONAL EXAMPLE

A small example is presented in this section to motivate the
need for our threshold network synthesis methodology. Consider the
Boolean network shown in Fig. 2(a) which has seven gates and five
levels (including the inverter). If we simply replace each gate with
a threshold gate, the resulting network will contain seven threshold
gates and five levels. This is a sub-optimal network because some
nodes in Fig. 2(a) can be collapsed into a single threshold node.
However, choosing which node to collapse presents a problem. If
we set the fanin restriction of a node to four,f = n1 ∨ n2 can be
collapsed to getf = n3x5 ∨x6x7. Now, we must determine iff is
a threshold function or not. In this case, it turns out thatf is not a
threshold function. Consequently, we must splitf into smaller nodes
using efficient heuristics. We choose to splitf as f = n3x5 ∨ n2

wheren2 = x6x7. We synthesizen3 next. After collapsing,n3 is
expressed asn3 = x1x2x3∨ x̄1x4. This is not a threshold function.
Therefore, we splitn3 into two nodes to getn3 = n4 ∨ n5, where
n4 = x1x2x3 and n5 = x̄1x4. These three nodes are threshold
functions. The synthesized threshold network is shown in Fig. 2(b).
It can be seen that the number of gates and levels has been reduced
by 28.6% (seven to five) and 40% (five to three), respectively.

The above example demonstrates that a threshold network syn-
thesis methodology should address the following key issues:

• It must be able to collapse the function of a node.
• It must be able to determine if a function is threshold or not.

n1

n2

n3

n
5

n4

f

x1x2
x3 x5

x4

x6
x7

x1

(a) A Boolean network.

31
1

1

1
1
-1

1
1
1 2

1

2
1

x1

x3

x2

x4

x1

2
1
1

x7

x6

x5

f
n3

n2

n4

n5

(b) The equivalent synthesized threshold network.

Fig. 2. An example to motivate the need for our threshold network synthesis
methodology.

• If a function is not threshold, it must be able to split the
function into smaller functions using efficient heuristics.

• If there exist fanout nodes in the original Boolean network, it
must preserve these nodes in the synthesized threshold network.

How a non-threshold function is split dictates the quality of the
synthesized network. Furthermore, node sharing helps to prevent
sub-network duplication during threshold network synthesis. It also
helps maintain the original network structure somewhat.

IV. T HEOREMS ONTHRESHOLDLOGIC

We present two new theorems that describe properties of threshold
logic in this section. We utilize these theorems in our threshold
logic network synthesis methodology. Along with the proof of each
theorem, we demonstrate its application with an example.

Theorem 1:Given an expression for a unate function,
f(x1, x2, . . . , xl), replace literalxi by literal x̄j , i, j ∈ {1, 2, . . . , l}
and i 6= j, resulting ing(x1, x2, . . . , xk), k ∈ {1, 2, . . . , l} and
k 6= i. If g is not a threshold function, thenf is not a threshold
function.

Proof: We prove the contrapositive of the claim. That is, iff
is a threshold function, theng is a threshold function. For simplicity,
we assumeδon = δoff = 0. Assumingf is a threshold function,
we have,

l∑
k=1

wkxk ≥ T ⇒ f = 1, (2)

l∑
k=1

wkxk < T ⇒ f = 0. (3)

Note that Equations (2) and (3) represent2l inequalities for all
combinations of variablesx1, x2, . . . , xl. By replacingxi with x̄j ,
we obtain the following2l−1 inequalities:

l∑
k=1,k 6=i

wkxk + wix̄j ≥ T ⇒ g = 1, (4)

l∑
k=1,k 6=i

wkxk + wix̄j < T ⇒ g = 0. (5)

Sincex̄j = 1− xj , we obtain,

l∑
k=1,k 6=i,j

wkxk + (wj − wi)xj ≥ T − wi ⇒ g = 1, (6)

l∑
k=1,k 6=i,j

wkxk + (wj − wi)xj < T − wi ⇒ g = 0. (7)

If assignments forwi and T exist such that the inequalities in
Equations (2) and (3) are satisfied, then the inequalities in Equations
(6) and (7) can also be satisfied with the weight-threshold vector,
〈w1, w2, . . . , wi−1, wi+1, . . . , wj−1, wj − wi, wj+1, . . . , wl;T −
wi〉, the weights corresponding to the variable sequence
〈x1, x2, . . . , xi−1, xi+1, . . . , xj−1, xj , xj+1, . . . , xl〉. Thus, g is
also a threshold function. By proving the contrapositive, the proof
is concluded.

As an application of Theorem 1, considerf = x1x2 ∨ x3x4. To
determine iff is threshold or not, we replacex3 by x̄1. This results
in g = x1x2 ∨ x̄1x4. Sinceg is binate inx1, it is not a threshold
function and, therefore,f is not a threshold function.

The relationship of the weights and threshold between functions
containingxi in positive and negative phase is given in [3]. That
is, given a positive unate function,f(x1, x2, . . . , xl), with weight-
threshold vector〈w1, w2, . . . , wl;T 〉, if xi is replaced bȳxi to get
g(x1, x2, . . . , xi−1, x̄i, xi+1, . . . , xl), then the weight ofxi in g is
simply−wi. Furthermore, the threshold ofg is T −wi. We negate
the original weight of each variable that appears in negative phase
in g to get its new weight. To obtain the new threshold, we subtract
the sum of the negated weights from the original threshold.

Theorem 2:If f(x1, x2, . . . , xl) is a threshold function, then
h(x1, x2, . . . , xl+k) = f(x1, x2, . . . , xl)∨xl+1∨xl+2∨ . . .∨xl+k

is also a threshold function.
Proof: A threshold function can always be represented in posi-

tive unate form by substituting negative variables with positive vari-
ables. For simplicity, we assume thatf is already expressed in this
form. There exists a weight-threshold vector,〈w1, w2, . . . , wl;T 〉,
for f since it is a threshold function. If any of thexl+j , j ∈
{1, 2, . . . , k}, equals1, h equals1. Otherwise,h is equal tof .
If we set the weightwl+j of xl+j to a value no less thanT + δon,
for example,wl+j = T + δon, then the output is1 whenxl+j is
1. Whenxl+j and some otherxi, i ∈ {1, 2, . . . , l}, equal1, the
output is also1. This is because we have represented the function
in positive unate form, thereby guaranteeing that all the weights and
threshold off are positive. When all ofxl+j equal0, h equalsf .
Thus, a weight-threshold vector forh always exists. Therefore,h is
a threshold function.

To illustrate Theorem 2, letf(x1, x2) = x1x̄2. First, we represent
f in positive unate form asg(x1, y2) = x1y2 wherey2 = x̄2. Since
g is a threshold function with weight-threshold vector〈1, 1; 2〉,
h(x1, y2, x3) = g(x1, y2) ∨ x3 = x1y2 ∨ x3 is also a threshold
function with weight-threshold vector〈1, 1, 2; 2〉. Sincey2 = 1−x2,
x1x̄2 ∨x3 is also a threshold function with weight-threshold vector
〈1,−1, 2; 1〉.

V. M ETHODOLOGY AND IMPLEMENTATION

We present our multi-level threshold network synthesis method-
ology and its implementation in this section. Fig. 3 gives a high-
level overview of the main steps that comprise our methodology.
The input to our methodology is an algebraically-factored multi-
output combinational network,G, and its output is a functionally
equivalent threshold network,GT . An algebraically-factored circuit
is used as an input because its nodes are more likely to be unate and
hence possibly threshold functions. The weights and threshold are
specified for each node in the synthesized network. The user can
specify the fanin restriction and the defect tolerances in the weights
in a threshold gate that are used during threshold network synthesis.

The synthesis algorithm begins by processing each primary output
of network G. First, the node representing a primary output is
collapsed. If the node represents a binate function, it is split into
multiple smaller nodes which are then processed recursively. If the
unate node is a threshold function, it is saved in the threshold
network and the fanins of the node are processed recursively.
Otherwise, the unate node is first split into two nodes. If either
of the split nodes is a threshold function, Theorem 2 is used as
a simplification step. If neither of the split nodes is a threshold
function, the original node is split into multiple smaller nodes which
are then processed recursively. The synthesis algorithm terminates
when all the nodes in networkG are mapped into threshold nodes.
We describe each step in detail in the following subsections.

The variables that are used in our algorithms are defined as
follows:

Node Collapsing
Algorithm

Binate Node
Splitting Algorithm

Collapse node n

Is n
unate?

Form ILP formulation
for n and solve

Is n
threshold ?

Split binate n into
n1, n2, …, nk

Add n to threshold
network

For each fanin of n,
set it as node n

Split unate n into
n1 and n2

For each split node
n1, n2, …, nk

For each
output in network G

YES

YESNO

NO

Is n1 or n2
threshold?

YESNO

Use Theorem 2 to
combine nodes

Split unate n into
n1, n2, …, nk

ILP Formulation
Algorithm

Unate Node
Splitting Algorithm

Unate Node
Splitting Algorithm

For each fanin of
combined nodes,
set it as node n

For each fanin of ni ,
set it as node n

Fig. 3. Flow diagram providing a high-level overview of our threshold
network synthesis methodology.

Require: noden, ψ > 0
n′ ← n
l← |Fn′ |

3: if ∀x in Fn′ , x /∈ P then
while l ≤ ψ do

for all x in Fn′ do
6: // if neither primary input nor fanout node

if f /∈ P ∧ x /∈ S then
substitute the function ofx into n′

9: l← |Fn′ | // updatel
if l > ψ then
n′ ← undo the substitution ofx into n′

12: break
// if all fanins are primary inputs or fanout nodes
if ∀x in Fn′ , x ∈ (P ∪ S) then

15: break
returnn′ // collapsed node

Fig. 4. The node collapsing algorithm.

P Set of primary inputs in networkG.
S Set of fanout nodes in networkG.
n A node in networkG.
Fn Set of fanins of noden.
x(j) The (jth) fanin of a node.
ψ Fanin restriction on a threshold gate.
l Cardinality ofFn.
Z Set of threshold functions.
Kn Set of cubes of noden.
Cni The ith cube of noden.−→
W The weight-threshold vector,〈w1, w2, . . . , wl;T 〉.

A. Node Collapsing
The node collapsing algorithm is shown in Fig. 4. Given a node

n, we keep collapsing it until one of the following conditions is
met:

• All fanins of n are primary inputs and/or fanout nodes.
• The fanin ofn exceedsψ.

Note that the algorithm guarantees that the fanin of a node never
exceedsψ by choosing to undo the effects of node collapsing that
was done in line8 of the node collapsing algorithm.

To demonstrate node collapsing, let us consider the network with
output nodef shown in Fig. 5. Here,ψ is set to four,l = 2,
Ff = {n1, n2}, P = {x1, x2, x3, x4}, S = {n3}, andf = n1∨n2.
Since the inputs tof are not primary inputs andl is less than

x1

x2

x4

x3

n1

n3

n2

f

Fig. 5. Example network to demonstrate node collapsing on outputf .

Require: positive unate noden
np ← n
nn ← invert n

3: for i = 1 to |Fn| do // objective function
print “wi+”

print “T ”
6: for i = 1 to |Knp | do // ON-set inequalities

for j = 1 to |Fp| do
if xj ∈ Cnpi

then
9: print “wj+”

print “−δon ≥ T ”
for i = 1 to |Knn | do // OFF-set inequalities

12: for j = 1 in |Fn| do
if xj /∈ Cnni

then
print “wj+”

15: print “δoff < T ”−→
W ← solve ILP problem
if
−→
W 6= ∅ then

18: for j = 1 in |Fn| do
if xj in negative phase inn then
W [T]← W [T]−W [wj] // subtract weight from original threshold

21: W [wj]← −W [wj] // negate the weight
return

−→
W // weight-threshold vector

else
24: return∅ // no solution exists

Fig. 6. The ILP formulation algorithm.

ψ, we first collapsen1 to get f = x1n3 ∨ n2. Now, l = 3 and
Ff = {x1, n2, n3}. Since l is still less thanψ, we continue by
collapsingn2 to getf = x1n3∨n3x4. Now, we cannot collapsex1

andx4 since they are primary inputs. Furthermore, observing that
n3 is a fanout node, we do not collapse it either. Thus, the final
result after collapsing isf = x1n3 ∨ n3x4.

As demonstrated in the example, node sharing is preserved
during node collapsing because the process stops once a fanout
node is encountered. This implicitly helps to maintain some of the
original network structure and provides guidance for better network
decomposition. The benefit is profound when the network contains
many fanout nodes.

B. Formulating Synthesis as an ILP Problem

Once a node has been collapsed into a unate function, it is
necessary to determine whether it is threshold or not. We solve
this problem by casting it in an ILP formulation. There are at most
2l distinct cubes for a logic function ofl variables and this leads to
2l inequalities which represent the constraints. However, many of
these constraints are redundant. We have devised a simple method
to eliminate redundant constraints which makes the ILP formulation
smaller and possibly faster to solve. The algorithm for formulating
the ILP problem and determining the weight-threshold vector for a
threshold function is shown in Fig. 6.

The algorithm is best demonstrated by an example. Given a
unate function,f(x1, x2, . . . , xl), if it contains variables in negative
phase, we first transform these variables into other variables in pos-
itive phase using variable substitution. Considerf = x1x̄2 ∨ x1x̄3,
wherex2 and x3 are in negative phase. By replacinḡx2 with y2
andx̄3 with y3, we get the positive unate functiong = x1y2∨x1y3.
The ILP formulation forg is as follows:

minimize : w1 + w2 + w3 + T (8)
subject to : w1 + w2 ≥ T + δon (9)

w1 + w3 ≥ T + δon (10)
w2 + w3 < T − δoff (11)
w1 < T − δoff (12)
wi ≥ 0, integer, i = 1, 2, 3. (13)

Require: unate noden, ψ > 0
if all variables appear oncethen // condition1
n = n1 ∨ n2 s.t. |Kn1 | = |Kn2 |

3: else if∀c, c ∈ Kn, variablexi ∈ c then // conditions2 and4
n1 ← xi // assuming correct phase
n2 ← factorn w.r.t. n1

6: else// condition3
xi ← most frequently appearing variable
n1 ←

∑
c, xi ∈ c ∧ c ∈ Kn

9: n2 ←
∑
c1, c1 /∈ n1 ∧ c1 ∈ Kn

if n1 ∈ Z then // assuming|Kn1 | ≥ |Kn2 |
combine nodes according to Theorem 2

12: ~v ← n1 ∨ n2
else ifn2 ∈ Z then

combine nodes according to Theorem 2
15: ~v ← n1 ∨ n2

else
k ← (|Kn| ≤ ψ) ? |Kn| : ψ // pick the smaller one

18: ~v ←
k∑

i=1
ni // split n into k smaller nodes

return~v // array of split nodes

Fig. 7. The unate node splitting algorithm.

The objective function for this ILP problem is defined as the
summation of the weights and threshold, in order to reduce threshold
gate area. Sinceg has been transformed into a positive unate form,
only 1 and don’t care (−) will appear in its ON-set cubes (set
of cubes for which the function is 1). The ON-set cubes ofg
are (1 1 −) and (1 − 1), wherex1, y2, and y3 is the variable
sequence. To transform the ON-set cubes into inequalities, theith

1 value corresponds towi. We need not consider don’t cares in the
inequalities, because they represent redundancies ing. For example,
the ON-set cube(1 1 −) corresponds to two inequalities, namely,
w1 + w2 ≥ T + δon andw1 + w2 + w3 ≥ T + δon. The second
inequality is redundant because once the first inequality is satisfied,
the second inequality is automatically satisfied as well.

To compute the OFF-set cubes (set of cubes for which the
function is 0) of g, we simply invert g to get ḡ. The ON-set
cubes of ḡ correspond to the OFF-set cubes ofg. Becauseḡ is
always in negative unate form, only0 and − appear in its ON-
set cubes. Continuing with the earlier example, we invertg to get
ḡ = x̄1 ∨ ȳ2ȳ3 after simplification. The ON-set cubes for̄g are
(0 − −) and (− 0 0). For the OFF-set inequalities, theith don’t
care corresponds to weightwi. Therefore, the OFF-set inequalities
for g arew2 + w3 < T − δoff andw1 < T − δoff , as given in
Equations (11) and (12).

By requiring the variables to be integer-valued (i.e., constraint
(13)), this ILP problem has an optimal solution. The weight-
threshold vector forg is 〈2, 1, 1; 3〉. Using the relationship stated in
Section IV, the final weight-threshold vector forf is 〈2,−1,−1; 1〉.

C. Unate Node Splitting and Combining

If the ILP problem for noden does not have a solution, the node
must be split into smaller nodes to increase the likelihood of the
split nodes being threshold functions. Fig. 7 outlines the splitting
process of a unate node. How a unate node is split is contingent
upon one of the following conditions:

1) All of the variables appear exactly once.
2) Some of the variables appear in all the cubes.
3) The most frequent variable(s) does not appear in all the cubes.
4) A tie between the most frequent variables is broken randomly.

If all the variables appear only once, we simply split the node into
two, with each node containing roughly equal number of cubes. For
example,n = x1x2 ∨ x3x4 ∨ x5x6 is split asn1 = x1x2 ∨ x3x4,
n2 = x5x6, with n = n1 ∨ n2. When a variable appears in all the
cubes, we split the node into two by factoring this variable out of the
node. For example, forn = x1x2∨x1x3x4∨x1x5x6, n1 = x1 and
n2 = x2∨x3x4∨x5x6, with n = n1n2. If the above two conditions
are not met, we split the node using the most frequently appearing
variable. For example, givenn = x1x2 ∨ x1x3 ∨ x4x5, we split on
x1 to getn1 = x1x2 ∨ x1x3 andn2 = x4x5, with n = n1 ∨ n2.
This last condition reduces the likelihood of a function being non-
threshold because there are fewer candidate variables to choose from
in the split nodes to prevent the condition in Theorem 1 from being
satisfied.

Require: binate noden, ψ > 0
k ← (|Kn| ≤ ψ) ? Kn : ψ // pick the smaller one
~v ← n // split on binate variables when needed

3: while |~v| 6= k ∧ ∃p ∈ ~v, s.t.p has binate variablexi do
n1 ← p(xi, . . .)
n2 ← p(x̄i, . . .) // assign the resulting split nodes to vector

6: ~v ← {~v − p} ∨ {n1, n2}
// split on unate variables when needed
while |~v| 6= k ∧ ∃p ∈ ~v, s.t.p is unatedo
n1 ← split unate nodep

9: // assign the resulting split nodes to vector
~v ← {~v − p} ∨ n1

return~v // array of split nodes

Fig. 8. The binate node splitting algorithm.

Threshold Logic
Synthesis

One-to-one
Mapping

sis>thprint

{f} = [217] [218]; 1:1 1
[217] = a b; 2; 1 1
[218] = c d; 1; 1 -1

sis>

thsyn thconv

thprint thstats thsim

sis>thstats

PI: 4
PO: 1
Total nodes: 3
Max levels: 3
Area: 9

sis>

sis>thsim 0 0 1 1

Output: 1

sis>thsim 1 0 1 0

Output: 0

sis>

Threshold Networks

Algebraically-factored
Boolean Networks

a
b

c
f

d

Fig. 9. The framework of the threshold network synthesis tool: TELS.

Once a node has been split, we choose the larger node (i.e., the
one with more cubes) and check that node to see if it is a threshold
function. If it is, we apply Theorem 2. Looking at the last example,
since n1 = x1x2 ∨ x1x3 is a threshold function with weight-
threshold vector〈2, 1, 1; 3〉, function n = x1x2 ∨ x1x3 ∨ n2 is
also a threshold function with weight-threshold vector〈2, 1, 1, 3; 3〉.
Now, n2 is processed by further collapsing, threshold checking, or
splitting. If neither of the split nodes is a threshold function, the
original node is split intok smaller nodes, wherek is the smaller of

ψ and|Kn|. After splitting,n =
k∑

i=1

ni which is a threshold function

with weight-threshold vector〈1, 1, . . . , 1; 1〉. The split nodes,ni,
i ∈ {1, 2, . . . , k}, are then processed recursively.

D. Binate Node Splitting
If a noden is binate, we split it intok smaller nodes wherek is

the smaller ofψ and|Kn|. The algorithm for binate node splitting is
shown in Fig. 8. We first split the binate node on the most frequently
appearing binate variable. If the split nodes are binate, we repeat
the process. Otherwise, we use the unate node splitting algorithm,
as detailed in the previous subsection.

To demonstrate binate splitting, considern = x̄1x4 ∨ x2x3 ∨
x̄2x4x5, where ψ is five and |Kn| is three. This node is split
into three nodes. First it is split on the binate variable,x2, to
get n1 = x̄1x4 ∨ x2x3 and n2 = x̄2x4x5. Now, n1 is further
split into n1 = x̄1x4 and n3 = x2x3. Thus,n is represented as
n = n1 ∨ n2 ∨ n3, which is a threshold function with weight-
threshold vector〈1, 1, 1; 1〉. Threshold network synthesis proceeds
recursively by processing each of the split nodes.

E. Complexity Analysis
In this subsection, we perform the complexity analysis of the

algorithms in our threshold network synthesis methodology. The
complexity of the node collapsing algorithm isO(1), because the
total number of operations performed by the algorithm is propor-
tional to the fanin restriction, which is constant. The complexity of

TABLE I
THRESHOLDSYNTHESIS RESULTS WITH FANIN RESTRICTIONSET TO 3

One-to-one mapping Threshold network synthesis
Benchmark Gates Levels Area Gates Levels Area

cm152a 28 4 99 13 4 69
cordic 92 9 307 39 8 219
cm85a 70 8 254 16 6 158
comp 181 12 625 70 9 435
cmb 41 7 142 16 7 103
term1 397 12 1,459 144 16 787
pm1 49 5 176 22 3 119
x1 428 10 1,589 144 10 968
i10 2,874 49 10,934 1,276 47 7,261
tcon 24 2 80 32 2 96

both the unate and binate node splitting algorithms isO(|Fn|·|Kn|).
Since ILP is NP-complete, our synthesis problem is NP-complete
in theory. However, in practice, the ILP solver is implemented such
that if the optimal solution cannot be found in a reasonable amount
of time, it declares the problem as infeasible. If that happens, the
splitting algorithms in our methodology create smaller problems for
the ILP solver to solve. In this way, the threshold network synthesis
problem can be solved efficiently in practice with our methodology.

F. Implementation
We implemented the proposed methodology in a tool called

ThrEshold Logic Synthesizer (TELS) which has been integrated
within SIS. This is the first multi-output multi-level threshold
network synthesis tool to the best of our knowledge. The package
currently consists of approximately 3,500 lines of C code. We
integrated a linear programming tool calledLP SOLVE[13] in SIS
to solve the ILP problems. The framework of TELS is shown in
Fig. 9. Currently, it supports five commands, which perform one-
to-one mapping, threshold synthesis and simulation, and displaying
of network information.

VI. EXPERIMENTAL RESULTS

We present our experimental results in this section. The exper-
iments were conducted on a 2.4 GHz Pentium IV machine with
768MB RAM running Redhat Linux 8.0. We ran all the benchmarks
in the MCNC benchmark suite through TELS. All the synthesized
networks were simulated for functional correctness to validate our
methodology.

A. Threshold Gate Count and Area
Due to space limitations, Table I lists the results for only 10

of the 60 benchmarks. In this table, one-to-one mapping refers
to replacing each gate in the optimized Boolean network with a
threshold gate. The optimized Boolean network was obtained by
running thescript.booleanscript in SIS. The threshold network
synthesis results were obtained by running thescript.algebraicscript
and then synthesizing the threshold network from the resulting
algebraically-factored network. The area of the network,A, was
calculated using the following equation:

A =
∑

g∈GT

l∑
i=1

(|wi|+ |T |)Au, (14)

whereg is a threshold gate in networkGT , l is the number of inputs
in gateg, wi is the weight of inputi, Au is the unit area of an RTD
with w = 1, andT is the threshold of the gate. In our case, we
let Au equal one. The HFET area is ignored because it is typically
much smaller than the RTD area.

The total time required to algebraically factor and synthesize the
benchmarks was less than one second in each case. On an average,
42% of the total execution time was spent on threshold network
synthesis while the remaining time was spent on factoring the
network. Comparing the results, we see that 52% average reduction
is possible in gate count. In some cases, such astcon, we do worse
than a one-to-one mapping because there exist Boolean functions
that require more threshold gates than Boolean gates. However, this
is not a significant problem because we can always choose the better
of the two networks, thereby, guaranteeing that TELS will never

3 4 5 6 7 8
60

80

100

120

140

160

180

of

 T
hr

es
ho

ld
 G

at
es

Fanin Restriction

 One-to-one
 Threshold Network Synthesis

Fig. 10. Gate-count vs. fanin restriction forcomp.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

Fa
ilu

re
 R

at
e

(%
)

Variation Multiplier, v

 δ on = 0
 δ on = 1
 δ on = 2

Fig. 11. The failure rate due to variations in the input weights.

output a network requiring more gates than that required for one-
to-one mapping.

B. Trend of Threshold Gate Count with Change in Fanin Restriction
Fig. 10 demonstrates the trend in the total number of threshold

gates required for thecomp benchmark as the maximum fanin
restriction is relaxed from three to eight. There is a significant
difference in gate count in the one-to-one mapping case as the fanin
restriction is relaxed. This is because with larger allowed fanin, it is
possible to decompose a factorized network better. However, there is
no significant reduction in the number of threshold gates for TELS.
This is understandable because as the allowed fanin increases, the
likelihood of a function being threshold decreases. As reported in
[3], all positive unate functions of three or fewer variables are
threshold functions. However, 17 out of 20 and only 92 out of 168
positive unate functions of four and five variables, respectively, are
threshold functions, not considering variable permutations. Thus,
we can see that with increasing allowed fanin, the percentage
of functions that are threshold decreases drastically. The overall
conclusion is that a fanin restriction of three to five gives good
results.

C. Parametric Variations in Weights
We performed experiments to gauge the impact of parametric

variations in the input weights on the circuit functionality. We varied
δon from zero to three andδoff was fixed at one. The disturbed
valuew′ was computed asw′ = w+v×U(−0.5, 0.5), wherew is
the original value,v is the variation multiplier andU(−0.5, 0.5)
is a random variable uniformly distributed between−0.5 and
0.5. The circuit fails if there exists any input vector with which
TELS generates a wrong output value under the disturbed weights
during simulation. The failure rate is defined as the percentage of
benchmarks that failed to pass simulation. The results shown in
Fig. 11 demonstrate that asδon increases, the failure rate decreases.
This is because the network is more robust. The tradeoff is that the
network area increases as shown in Fig. 12 for the casev = 0.8.

VII. C ONCLUSIONS

In this paper, we introduced the first comprehensive threshold net-
work synthesis methodology for multi-output multi-level networks.

-1 0 1 2 3 4

0

20

40

60

80 Failure Rate
 Increase in

 Network Area

Defect Tolerance, δ δ δ δ on

Fa
ilu

re
 R

at
e

(%
)

0

50

100

150

200

250

300

Increase in N
etw

ork A
rea (%

)

Fig. 12. The relationship between failure rate, network area, and defect
tolerance due to variations in the input weights with variation multiplier
v = 0.8.

The algorithm in our methodology is recursive in nature and is
based upon efficient heuristics that partition a logic function if it is
determined to be non-threshold using an ILP formulation. Any logic
sharing that occurs in the algebraically-factored network is reflected
in the threshold network. We have implemented the methodology on
top of an existing logic synthesis tool to produce the first threshold
network synthesis tool, and validated it by running the tool on a large
number of benchmarks and simulating the synthesized networks.
Experimental results for the benchmarks show that the quality of
the generated networks, in terms of total gate count and the number
of levels, is very good.

Because this is the first tool for threshold network synthesis, there
is room for improvement. For example, our method performs a back-
ward traversal of the network from the outputs to the inputs. This
makes the synthesized network somewhat dependent on the original
network structure. Perhaps other approaches, such as divide and
conquer, could also be used in threshold network synthesis. There
may also exist better partitioning heuristics that might generate
better results. Furthermore, perhaps different heuristics are required
depending upon the optimization criteria. We hope that others will
join in our efforts to improve upon this work. We also hope that
integrating our methodology in commercial design automation tools
will help pave the way for a smoother transition towards logic design
using nanotechnologies.

REFERENCES

[1] “Semiconductor Industries Association Roadmap.” http://public.itrs.net
[2] D. Goldhaber-Gordonet al., “Overview of nanoelectronic devices,”

Proc. IEEE, vol. 85, no. 4, pp. 521–540, Apr. 1997.
[3] S. Muroga,Threshold Logic and its Applications. New York, NY:

John Wiley, 1971.
[4] K. J. Chen, K. Maezawa, and M. Yammoto, “InP-based high-

performance monostable-bistable transition logic elements (MO-
BILE’s) using integrated multiple-input resonant-tunneling devices,”
IEEE Electron Device Lett., vol. 17, no. 3, pp. 127–129, Mar. 1996.

[5] Z. Kohavi, Switching and Finite Automata Theory. New York, NY:
McGraw-Hill, 1978.

[6] G. D. Hachtel and F. Somenzi,Logic Synthesis and Verification
Algorithms. Norwell, MA: Kluwer Academic Publishers, 1998.

[7] R. O. Winder, “Threshold logic,” Ph.D. dissertation, Princeton Univer-
sity, 1962.

[8] M. L. Dertouzos,Threshold Logic: A Synthesis Approach. Cambridge,
MA: The M.I.T. Press, 1965.

[9] G. E. Sobelman and K. Fant, “CMOS circuit design of threshold gates
with hysteresis,” inProc. Int. Conf. Circuits & Systems, vol. 2, May
1998, pp. 61–64.

[10] V. Beiu, J. M. Quintana, and M. J. Avedillo, “VLSI implementations of
threshold logic - A comprehensive survey,”Tutorial at Int. Joint Conf.
Neural Networks, July 2003.

[11] A. L. Oliveira and A. Sangiovanni-Vincentelli, “LSAT - An algorithm
for the synthesis of two level threshold gate networks,” inProc. Int.
Conf. Computer-Aided Design, Nov. 1991, pp. 130–133.

[12] E. M. Sentovichet al., “Sequential circuit design using synthesis and
optimization,” in Proc. Int. Conf. Computer Design, Oct. 1992, pp.
328–333.

[13] M. Berkelaar, “Linear programming solver.” http://www.cs.sunysb.edu/
∼algorith/implement/lpsolve/implement.shtml

